Logo Logo
Help
Contact
Switch Language to German
Hedderich, Dennis M.; Weiss, Kilian; Spiro, Judith E.; Giese, Daniel; Beck, Gabriele M.; Maintz, David; Persigehl, Thorsten (2018): Clinical Evaluation of Free-Breathing Contrast-Enhanced T1w MRI of the Liver using Pseudo Golden Angle Radial k-Space Sampling. In: Röfo - Fortschritte auf dem Gebiet der Röntgenstrahlen und der Bildgebenden Verfahren, Vol. 190, No. 7: pp. 601-609
Full text not available from 'Open Access LMU'.

Abstract

Purpose Contrast-enhanced T1-weighted MR imaging of the liver is typically acquired using breath-hold techniques to reduce motion artifacts and to allow for optimal diagnostic image quality. Insufficient breath-holds during MR data collection can cause severe reduction of image quality up to the point of being non-diagnostic. The aim of this study was to evaluate the subjective and objective clinical image quality of a novel free-breathing radial k-space sampling MR technique. Materials and Methods Consent for this study was given by the local IRB committee. 86 patients who underwent both breath-hold (BH) and free-breathing (FB) late-phase contrast T1w-FS-FFE liver MRI using conventional BH Cartesian (Cartesian-eTHRIVE) and FB "pseudo golden angle" radial k-space sampling (Radial-eTHRIVE) were included in this retrospective analysis. Subjective analysis comprised 5-point Likert scale ratings (1 = very good;5 = non-diagnostic) for "artifact impact", "anatomic sharpness", "vessel sharpness", "contrast impression", and "overall diagnostic quality". Relative signal intensities in different ROIs were compared between Cartesian-eTHRIVE and Radial-eTHRIVE. For statistical differences paired Wilcoxon test and paired t-test have been performed (p < 0.05). Results The MR scan time was significantly longer for FB Radial-eTHRIVE (2min, 54 s) compared to BH Cartesian-eTHRIVE (0 min 15 s). Cartesian-eTHRIVE demonstrated a superior subjective contrast impression and objective measurements revealed an increased lesion-to-liver-contrast for hypointense liver lesions (Hypo-LTLC: 0.33 +/- 0.19 vs. 0.20 +/- 0.11;p = 0.000), while no difference was observed for hyperintense liver lesions (Hyper-LTLC). Subjective evaluation showed superior anatomic sharpness ratings by both readers for Radial-eTHRIVE. Most importantly, in a subgroup analysis of patients who were unable to perform adequate breath-holds, free-breathing Radial-eTHRIVE still demonstrated good subjective image quality. Conclusion Free-breathing, radial k-space sampling T1w MRI of the liver delivers high diagnostic image quality, especially in patients who are unable to adequately perform breath-hold maneuvers. Thus, Radial-eTHRIVE can be an important clinical alternative in patients with impaired respiration status.