Logo Logo
Hilfe
Hilfe
Switch Language to English

Goedel, Manfred (2018): Entrainment memories: What does stable mean? In: Psych Journal, Bd. 7, Nr. 4: S. 209-224

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

Diurnal environmental factors (zeitgebers) set the circadian clock in an antagonistic way: The body clock is tuned forward in the morning, while the same factor late in the day puts the body clock back to a later time-point: Morning light, for example, reduces the clock-effective light-reception (zeitnehmer(2)) by shifting the expression of the circadian, light-processing, molecular machinery more into the late, light-less night. Evening light does the same by a backward-shift, respectively. The balance between these daily back and forth adaptations results in a synchronization of the organismic timing with its environment. Those traditional models are challenged in this study. Using Neurospora as a model, I will explore how the entrainment process follows diverging trajectories depending on zeitgeber structure and strength, and the kind of transition between different entraining situations. The diverging routes of entrainment, systematically becoming earlier and earlier or later and later until eventually settling in distinct entrained phases, point out the existence of a long-range "memory" component. The view of entrainment as a non-acute reaction is very well confirmed in feedback loops, limit cycles, phase-response curves, and so forth. However, the presented findings enhance an extension of those concepts: The processing of zeitgebers by oscillating zeitnehmer modules resulting in a certain temporal inner structuring is not fully established within one repetition along a unique reaction norm. I hypothesize that the long-range, multi-cycle component in entraining requires a third parameter of description additional to current internal phase and zeitgeber condition, which originates from the differential of the two or more consecutive periodic situations. I hypothesize that this differential is represented by a gradient of Gibbs free energy of the entrainment pathways. Low points of free energy identify stable phases of entrainment. The fundamentality of Gibbs energy puts entrainment up for discussion not only as a timer but as an important kind of homeostasis.

Dokument bearbeiten Dokument bearbeiten