Abstract
This tutorial article demonstrates how time-to-event data can be modelled in a very flexible way by taking advantage of advanced inference methods that have recently been developed for generalized additive mixed models. In particular, we describe the necessary pre-processing steps for transforming such data into a suitable format and show how a variety of effects, including a smooth nonlinear baseline hazard, and potentially nonlinear and nonlinearly time-varying effects, can be estimated and interpreted. We also present useful graphical tools for model evaluation and interpretation of the estimated effects. Throughout, we demonstrate this approach using various application examples. The article is accompanied by a new R-package called pammtools implementing all of the tools described here.
Item Type: | Journal article |
---|---|
Faculties: | Mathematics, Computer Science and Statistics > Statistics |
Subjects: | 500 Science > 510 Mathematics |
URN: | urn:nbn:de:bvb:19-epub-66323-5 |
ISSN: | 1471-082X |
Alliance/National Licence: | This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. |
Language: | English |
Item ID: | 66323 |
Date Deposited: | 19. Jul 2019, 12:19 |
Last Modified: | 04. Nov 2020, 13:47 |