Abstract
Vine copulas (or pair-copula constructions) have become an important tool for high-dimensional dependence modeling. Typically, so-called simplified vine copula models are estimated where bivariate conditional copulas are approximated by bivariate unconditional copulas. We present the first nonparametric estimator of a non-simplified vine copula that allows for varying conditional copulas using penalized hierarchical B-splines. Throughout the vine copula, we test for the simplifying assumption in each edge, establishing a data-driven non-simplified vine copula estimator. To overcome the curse of dimensionality, we approximate conditional copulas with more than one conditioning argument by a conditional copula with the first principal component as conditioning argument. An extensive simulation study is conducted, showing a substantial improvement in the out-of-sample Kullback-Leibler divergence if the null hypothesis of a simplified vine copula can be rejected. We apply our method to the famous uranium data and present a classification of an eye state data set, demonstrating the potential benefit that can be achieved when conditional copulas are modeled.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Statistik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 0960-3174 |
Sprache: | Englisch |
Dokumenten ID: | 66333 |
Datum der Veröffentlichung auf Open Access LMU: | 19. Jul. 2019, 12:19 |
Letzte Änderungen: | 04. Nov. 2020, 13:47 |