Abstract
In the framework of Bishop's constructive mathematics we introduce co-convexity as a property of subsets B of {0, 1}*, the set of finite binary sequences, and prove that co-convex bars are uniform. Moreover, we establish a canonical correspondence between detachable subsets B of {0, 1}* and uniformly continuous functions f defined on the unit interval such that B is a bar if and only if the corresponding function f is positive-valued, B is a uniform bar if and only if f has positive infimum, and B is co-convex if and only if f satisfies a weak convexity condition.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 0022-4812 |
Sprache: | Englisch |
Dokumenten ID: | 66381 |
Datum der Veröffentlichung auf Open Access LMU: | 19. Jul. 2019, 12:19 |
Letzte Änderungen: | 13. Aug. 2024, 12:42 |