Abstract
A holomorphic Engel structure determines a flag of distributions . We construct examples of Engel structures on such that each of these distributions is hyperbolic in the sense that it has no tangent copies of . We also construct two infinite families of pairwise non-isomorphic Engel structures on by controlling the curves tangent to . The first is characterised by the topology of the set of points in admitting -lines and the second by a finer geometric property of this set. A consequence of the second construction is the existence of uncountably many non-isomorphic holomorphic Engel structures on C-4.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 1050-6926 |
Sprache: | Englisch |
Dokumenten ID: | 66383 |
Datum der Veröffentlichung auf Open Access LMU: | 19. Jul. 2019, 12:19 |
Letzte Änderungen: | 13. Aug. 2024, 12:42 |