Abstract
We identify the compactness threshold for optimizing sequences of the Airy-Strichartz inequality as an explicit multiple of the sharp constant in the Strichartz inequality. In particular, if the sharp constant in the Airy-Strichartz inequality is strictly smaller than this multiple of the sharp constant in the Strichartz inequality, then there is an optimizer for the former inequality. Our result is valid for the full range of Airy-Strichartz inequalities (except the endpoints) both in the diagonal and off-diagonal cases.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik > Analysis, Mathematische Physik und Numerik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 0025-5831 |
Sprache: | Englisch |
Dokumenten ID: | 66384 |
Datum der Veröffentlichung auf Open Access LMU: | 19. Jul. 2019, 12:19 |
Letzte Änderungen: | 13. Aug. 2024, 12:42 |