Abstract
Let G be a split semisimple linear algebraic group over a field Ice. Let E be a G-torsor over a field extension k of k(0). Let h be an algebraic oriented cohomology theory in the sense of Levine-Morel. Consider a twisted form E/B of the variety of Borel subgroups G/B over k. Following the Kostant-Kumar results on equivariant cohomology of flag varieties we establish an isomorphism between the Grothendieck groups of the h-motivic subcategory generated by E/B and the category of finitely generated projective modules of certain Hecke-type algebra H which depends on the root datum of G, on the torsor E and on the formal group law of the theory h. In particular, taking h to be the Chow groups with finite coefficients F-p and E to be a generic G-torsor we prove that all finitely generated projective indecomposable submodules of an affine nil-Hecke algebra H of G with coefficients in F-p, are isomorphic to each other and correspond to the (non-graded) generalized Rost-Voevodsky motive for (G, p).
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 0001-8708 |
Sprache: | Englisch |
Dokumenten ID: | 66391 |
Datum der Veröffentlichung auf Open Access LMU: | 19. Jul. 2019, 12:19 |
Letzte Änderungen: | 13. Aug. 2024, 12:43 |