Abstract
We classify Legendrian unknots in overtwisted contact structures on S (3). In particular, we show that up to contact isotopy for every pair with n > 0 there are exactly two oriented non-loose Legendrian unknots in S (3) with Thurston-Bennequin invariant n and rotation number . (Only one overtwisted contact structure on S (3) admits a non-loose unknot K and the classical invariants have to be tb(K) = n and for n > 1.) This can be used to prove two results attributed to Y. Chekanov: The first implies that the contact mapping class group of an overtwisted contact structure on S (3) depends on the contact structure. The second result is that the identity component of the contactomorphism group of an overtwisted contact structure on S (3) does not always act transitively on the set of boundaries of overtwisted discs.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 1016-443X |
Sprache: | Englisch |
Dokumenten ID: | 66392 |
Datum der Veröffentlichung auf Open Access LMU: | 19. Jul. 2019, 12:19 |
Letzte Änderungen: | 04. Nov. 2020, 13:47 |