Mugnolo, Delio; Noja, Diego; Seifert, Christian
(2018):
AiryType Evolution Equations On Star Graphs.
In: Analysis & Pde, Vol. 11, No. 7: pp. 16251652

Full text not available from 'Open Access LMU'.
Abstract
We define and study the Airy operator on star graphs. The Airy operator is a thirdorder differential operator arising in different contexts, but our main concern is related to its role as the linear part of the Kortewegde Vries equation, usually studied on a line or a halfline. The first problem treated and solved is its correct definition, with different characterizations, as a skewadjoint operator on a star graph, a set of lines connecting at a common vertex representing, for example, a network of branching channels. A necessary condition turns out to be that the graph is balanced, i.e., there is the same number of ingoing and outgoing edges at the vertex. The simplest example is that of the line with a point interaction at the vertex. In these cases the Airy dynamics is given by a unitary or isometric (in the real case) group. In particular the analysis provides the complete classification of boundary conditions giving momentum (i.e., L2norm of the solution) preserving evolution on the graph. A second more general problem solved here is the characterization of conditions under which the Airy operator generates a contraction semigroup. In this case unbalanced star graphs are allowed. In both unitary and contraction dynamics, restrictions on admissible boundary conditions occur if conservation of mass (i.e., integral of the solution) is further imposed. The above wellposedness results can be considered preliminary to the analysis of nonlinear wave propagation on branching structures.