Logo Logo
Hilfe
Hilfe
Switch Language to English

Cuenin, Jean-Claude und Siegl, Petr (2018): Eigenvalues of one-dimensional non-self-adjoint Dirac operators and applications. In: Letters in Mathematical Physics, Bd. 108, Nr. 7: S. 1757-1778

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

We analyze eigenvalues emerging from thresholds of the essential spectrum of one-dimensional Dirac operators perturbed by complex and non-symmetric potentials. In the general non-self-adjoint setting, we establish the existence and asymptotics of weakly coupled eigenvalues and Lieb-Thirring inequalities. As physical applications, we investigate the damped wave equation and armchair graphene nanoribbons.

Dokument bearbeiten Dokument bearbeiten