Abstract
Touchscreens are a common fixture in current vehicles. With autonomous driving, we can expect touch interaction with such in-vehicle media systems to exponentially increase. In spite of vehicle suspension systems, road perturbations will continue to exert forces that can render in-vehicle touch interaction challenging. Using a motion simulator, we investigate how different vehicle speeds interact with road features (i.e., speed bumps) to influence touch interaction. We determine their effect on pointing accuracy and task completion time. We show that road bumps have a significant effect on touch input and can decrease accuracy by 19%. In light of this, we developed a Random Forest (RF) model that improves touch accuracy by 32.0% on our test set and by 22.5% on our validation set. As the lightweight model uses only features that can easily be determined through inertial measurement units, this model could be easily deployed in current automobiles.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Informatik |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik |
Sprache: | Englisch |
Dokumenten ID: | 66462 |
Datum der Veröffentlichung auf Open Access LMU: | 19. Jul. 2019, 12:19 |
Letzte Änderungen: | 13. Aug. 2024, 12:57 |