Abstract
k-nearest neighbor (k-NN) queries are well-known and widely used in a plethora of applications. However, in the original definition of k-NN queries there is no concern regarding diversity of the answer set with respect to the user's interests. For instance, travelers may be looking for touristic sites that are close to where they are, but that would also lead them to see different parts of the city. Likewise, if one is looking for restaurants close by, it may be more interesting to learn about restaurants of different categories or ethnicities which are nonetheless relatively close. The interesting novel aspect of this type of query is that there are two competing criteria to be optimized: closeness and diversity. We propose two approaches that leverage the notion of linear skyline queries in order to find the k diverse nearest neighbors within a radius r from a given query point, or (k, r)-DNNs for short. Our proposed approaches return a relatively small set containing all optimal solutions for any linear combination of the weights a user could give to the two competing criteria, and we consider three different notions of diversity: spatial, categorical and angular. Our experiments, varying a number of parameters and exploring synthetic and real datasets, in both Euclidean space and road networks, respectively, show that our approaches are several orders of magnitude faster than a straightforward approach.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Informatik |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik |
ISSN: | 1384-6175 |
Sprache: | Englisch |
Dokumenten ID: | 66482 |
Datum der Veröffentlichung auf Open Access LMU: | 19. Jul. 2019, 12:19 |
Letzte Änderungen: | 13. Aug. 2024, 12:58 |