Logo Logo
Switch Language to German
Orimo, Yuki; Sato, Takeshi; Scrinzi, Armin; Ishikawa, Kenichi L. (2018): Implementation of the infinite-range exterior complex scaling to the time-dependent complete-active-space self-consistent-field method. In: Physical Review A, Vol. 97, No. 2, 23423
Full text not available from 'Open Access LMU'.


We present a numerical implementation of the infinite-range exterior complex scaling [Scrinzi, Phys. Rev. A 81, 053845 (2010)] as an efficient absorbing boundary to the time-dependent complete-active-space self-consistent field method [Sato, Ishikawa, Brezinova, Lackner, Nagele, and Burgdorfer, Phys. Rev. A 94, 023405 (2016)] for multielectron atoms subject to an intense laser pulse. We introduce Gauss-Laguerre-Radau quadrature points to construct discrete variable representation basis functions in the last radial finite element extending to infinity. This implementation is applied to strong-field ionization and high-harmonic generation in He, Be, and Ne atoms. It efficiently prevents unphysical reflection of photoelectron wave packets at the simulation boundary, enabling accurate simulations with substantially reduced computational cost, even under significant (approximate to 50%) double ionization. For the case of a simulation of high-harmonic generation from Ne, for example, 80% cost reduction is achieved, compared to a mask-function absorption boundary.