Abstract
The numerical renormalization group (NRG) is tailored to describe interacting impurity models in equilibrium, but it faces limitations for steady-state nonequilibrium, arising, e.g., due to an applied bias voltage. We show that these limitations can be overcome by describing the thermal leads using a thermofield approach, integrating out high energy modes using NRG, and then treating the nonequilibrium dynamics at low energies using a quench protocol, implemented using the time-dependent density matrix renormalization group. This yields quantitatively reliable results for the current (with errors less than or similar to 3%) down to the exponentially small energy scales characteristic of impurity models. We present results of benchmark quality for the temperature and magnetic field dependence of the zero-bias conductance peak for the single-impurity Anderson model.
| Dokumententyp: | Zeitschriftenartikel |
|---|---|
| Fakultät: | Physik |
| Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik |
| ISSN: | 0031-9007 |
| Sprache: | Englisch |
| Dokumenten ID: | 66898 |
| Datum der Veröffentlichung auf Open Access LMU: | 19. Jul. 2019 12:21 |
| Letzte Änderungen: | 04. Nov. 2020 13:48 |
