Dörnbrack, Andreas; Gisinger, Sonja; Kaifler, Natalie; Portele, Tanja Christina; Bramberger, Martina; Rapp, Markus; Gerding, Michael; Söder, Jens; Zagar, Nedjeljka; Jelic, Damjan
(2018):
Gravity waves excited during a minor sudden stratospheric warming.
In: Atmospheric Chemistry and Physics, Vol. 18, No. 17: pp. 12915-12931
|
![[img]](https://epub.ub.uni-muenchen.de/67045/1.hassmallThumbnailVersion/acp-18-12915-2018.pdf)  Preview |
|
9MB |
Abstract
An exceptionally deep upper-air sounding launched from Kiruna airport (67.82 degrees N, 20.33 degrees E) on 30 January 2016 stimulated the current investigation of internal gravity waves excited during a minor sudden stratospheric warming (SSW) in the Arctic winter 2015/16. The analysis of the radiosonde profile revealed large kinetic and potential energies in the upper stratosphere without any simultaneous enhancement of upper tropospheric and lower stratospheric values. Upward-propagating inertia-gravity waves in the upper stratosphere and downward-propagating modes in the lower stratosphere indicated a region of gravity wave generation in the stratosphere. Two-dimensional wavelet analysis was applied to vertical time series of temperature fluctuations in order to determine the vertical propagation direction of the stratospheric gravity waves in 1-hourly high-resolution meteorological analyses and short-term forecasts. The separation of upward- and downward-propagating waves provided further evidence for a stratospheric source of gravity waves. The scale-dependent decomposition of the flow into a balanced component and inertia-gravity waves showed that coherent wave packets preferentially occurred at the inner edge of the Arctic polar vortex where a sub-vortex formed during the minor SSW.