Logo Logo
Switch Language to German
Guggenmos, Alexander; Cui, Yang; Heinrich, Stephan; Kleineberg, Ulf (2018): Attosecond Pulse Shaping by Multilayer Mirrors. In: Applied Sciences-Basel, Vol. 8, No. 12, 2503


The emerging research field of attosecond science allows for the temporal investigation of one of the fastest dynamics in nature: electron dynamics in matter. These dynamics are responsible for chemical and biological processes, and the ability to understand and control them opens a new door of fundamental science, with the possibility to influence all lives if medical issues can thereby be addressed. Multilayer optics are key elements in attosecond experiments;they are used to tailor attosecond pulses with well-defined characteristics to facilitate detailed and accurate insight into processes, e.g., photoemission, Auger decay, or (core-) excitons. Based on the investigations and research efforts from the past several years, multilayer mirrors today are routinely used optical elements in attosecond beamlines. As a consequence, the generation of ultrashort pulses, combined with their dispersion control, has proceeded from the femtosecond range in the visible/infrared spectra to the attosecond range, covering the extreme ultraviolet and soft X-ray photon range up to the water window. This article reviews our work on multilayer optics over the past several years, as well as the impact from other research groups, to reflect on the scientific background of their nowadays routine use in attosecond physics.