Abstract
Nanoparticle-based biomedicine has received enormous attention for theranostic applications, as these systems are expected to overcome several drawbacks of conventional therapy. Herein, effective and controlled drug delivery systems with on-demand release abilities and biocompatible properties are used as a versatile and powerful class of nanocarriers. We report the synthesis of a novel biocompatible and multifunctional material, entirely consisting of covalently crosslinked organic molecules. Specifically, -cyclodextrin (CD) precursors were crosslinked with rigid organic linker molecules to obtain small (approximate to 150 nm), thermally stable and highly water-dispersible nanoparticles with an accessible pore system containing -CD rings. The nanoparticles can be covalently labeled with dye molecules to allow effective tracking in in vitro cell experiments. Rapid sugar-mediated cell-uptake kinetics were observed with HeLa cells, revealing exceptional particle uptake within only 30 minutes. Additionally, the particles could be loaded with different cargo molecules showing pH-responsive release behavior. Successful nuclei staining with Hoechst 33342 dye and effective cell killing with doxorubicin cargo molecules were demonstrated in live-cell experiments, respectively. This novel nanocarrier concept provides a promising platform for the development of controllable and highly biocompatible theranostic systems.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Chemie und Pharmazie > Department Chemie |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 540 Chemie |
ISSN: | 2040-3364 |
Sprache: | Englisch |
Dokumenten ID: | 67357 |
Datum der Veröffentlichung auf Open Access LMU: | 19. Jul. 2019, 12:22 |
Letzte Änderungen: | 04. Nov. 2020, 13:49 |