Abstract
The temporal overlap of phenological stages, phenological synchrony, crucially influences ecosystem functioning. For flowering, among-individual synchrony influences gene flow. For leaf-out, it affects interactions with herbivores and competing plants. If individuals differ in their reaction to the ongoing change in global climate, this should affect population-level synchrony. Here, we use climate-manipulation experiments, Pan-European long-term (>15 years) observations, and common garden monitoring data on up to 72 woody and herbaceous species to study the effects of increasing temperatures on the extent of leaf-out and flowering synchrony within populations. Warmer temperatures reduce in situ leaf-out and flowering synchrony by up to 55%, and experiments on European beech provide a mechanism for how individual differences in day-length and/or chilling sensitivity may explain this finding. The rapid loss of reproductive and vegetative synchrony in European plants predicts changes in their gene flow and trophic interactions, but community-wide consequences remain largely unknown.
Item Type: | Journal article |
---|---|
Faculties: | Biology > Department Biology I |
Subjects: | 500 Science > 570 Life sciences; biology |
URN: | urn:nbn:de:bvb:19-epub-67627-8 |
ISSN: | 2050-084X |
Language: | English |
Item ID: | 67627 |
Date Deposited: | 19. Jul 2019, 12:22 |
Last Modified: | 04. Nov 2020, 13:49 |