Logo Logo
Hilfe
Hilfe
Switch Language to English

Pongratz, Julia ORCID logoORCID: https://orcid.org/0000-0003-0372-3960; Dolman, Han; Don, Axel; Erb, Karl-Heinz; Fuchs, Richard; Herold, Martin; Jones, Chris; Kuemmerle, Tobias; Luyssaert, Sebastiaan; Meyfroidt, Patrick und Naudts, Kim (2018): Models meet data: Challenges and opportunities inimplementing land management in Earth system models. In: Global Change Biology, Bd. 24, Nr. 4: S. 1470-1487 [PDF, 1MB]

[thumbnail of gcb.13988.pdf]
Vorschau
Download (1MB)

Abstract

As the applications of Earth system models (ESMs) move from general climate projections toward questions of mitigation and adaptation, the inclusion of land management practices in these models becomes crucial. We carried out a survey among modeling groups to show an evolution from models able only to deal with land‐cover change to more sophisticated approaches that allow also for the partial integration of land management changes. For the longer term a comprehensive land management representation can be anticipated for all major models. To guide the prioritization of implementation, we evaluate ten land management practices—forestry harvest, tree species selection, grazing and mowing harvest, crop harvest, crop species selection, irrigation, wetland drainage, fertilization, tillage, and fire—for (1) their importance on the Earth system, (2) the possibility of implementing them in state‐of‐the‐art ESMs, and (3) availability of required input data. Matching these criteria, we identify “low‐hanging fruits” for the inclusion in ESMs, such as basic implementations of crop and forestry harvest and fertilization. We also identify research requirements for specific communities to address the remaining land management practices. Data availability severely hampers modeling the most extensive land management practice, grazing and mowing harvest, and is a limiting factor for a comprehensive implementation of most other practices. Inadequate process understanding hampers even a basic assessment of crop species selection and tillage effects. The need for multiple advanced model structures will be the challenge for a comprehensive implementation of most practices but considerable synergy can be gained using the same structures for different practices. A continuous and closer collaboration of the modeling, Earth observation, and land system science communities is thus required to achieve the inclusion of land management in ESMs.

Dokument bearbeiten Dokument bearbeiten