Abstract
We motivate and develop an extension of Nelson’s constructive logic N3 that adds a counterfactual conditional to the existing setup. After developing the semantics, we will outline how our account will be able to give a nice analysis of natural language counterfactuals. In particular, the account does justice to the intuitions and arguments that have lead Alan Hájek to claim that most conditionals are false, but assertable, without actually forcing us to endorse that rather uncomfortable claim.
Dokumententyp: | Buchbeitrag |
---|---|
Fakultät: | Philosophie, Wissenschaftstheorie und Religionswissenschaft > Munich Center for Mathematical Philosophy (MCMP) > Logic |
Themengebiete: | 100 Philosophie und Psychologie > 100 Philosophie
100 Philosophie und Psychologie > 160 Logik |
ISBN: | 978-3-662-55664-1, 978-3-662-55665-8 |
Ort: | Berlin, Heidelberg |
Sprache: | Englisch |
Dokumenten ID: | 69254 |
Datum der Veröffentlichung auf Open Access LMU: | 23. Okt. 2019, 10:09 |
Letzte Änderungen: | 04. Nov. 2020, 13:51 |
Literaturliste: | Dunn, M.: Intuitive semantics for first-degree entailments and ‘coupled trees’. Philos. Stud. 29(3), 149–168 (1976) Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-Dimensional Modal Logics: Theory and Applications (2003) Hájek, A.: Most counterfactuals are false. Unpublished draft http://philrsss.anu.edu.au/people-defaults/alanh/papers/MCF.pdf Kamide, N., Wansing, H.: Proof Theory of N4-Related Paraconsistent Logics. Studies in Logic, vol. 54. College Publications, London (2015) Kapsner, A.: Logics and Falsifications. Trends in Logic, vol. 40. Springer, Heidelberg (2014) Lewis, D.K.: Counterfactuals. Blackwell, Boston (1973) Odintsov, S.P.: Constructive Negations and Paraconsistency. Trends in Logic, vol. 26. Springer, Heidelberg (2008) Omori, H.: A simple connexive extension of the basic relevant logic BD. IfCoLog J. Logics Appl. 3(3), 467–478 (2016) Omori, H.: From paraconsistent logic to dialetheic logic. In: Andreas, H., Verdée, P. (eds.) Logical Studies of Paraconsistent Reasoning in Science and Mathematics. TL, vol. 45, pp. 111–134. Springer, Cham (2016). doi: 10.1007/978-3-319-40220-8_8 Pizzi, C.: Boethius’ thesis and conditional logic. J. Philos. Logic 6, 283–302 (1977) Priest, G.: Negation as cancellation and connexive logic. Topoi 18(2), 141–148 (1999) Priest, G.: An Introduction to Non-Classical Logic: From If to Is, 2nd edn. Cambridge University Press, Cambridge (2008) Segerberg, K.: Notes on conditional logic. Stud. Logica 48(2), 157–168 (1989) Sider, T.: Logic for Philosophy. Oxford University Press, Oxford (2010) Unterhuber, M.: Beyond system P - Hilbert-style convergence results for conditional logics with a connexive twist. IfCoLog J. Logics Appl. 3(3), 377–412 (2016) Wansing, H.: Semantics-based nonmonotonic inference. Notre Dame J. Formal Logic 36(1), 44–54 (1995) Wansing, H.: Connexive modal logic. In: Schmidt, R., Pratt-Hartmann, I., Reynolds, M., Wansing, H. (eds.) Advances in Modal Logic, vol. 5, pp. 367–383. King’s College Publications, London (2005) Wansing, H.: A note on negation in categorial grammar. Logic J. IGPL 15, 271–286 (2007) Wansing, H.: Connexive logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2014). http://plato.stanford.edu/archives/fall2014/entries/logic-connexive/. Fall 2014 edition |