Abstract
Ecological studies need experimentation to test concepts and to disentangle causality in community dynamics. While simple models have given substantial insights into population and community dynamics, recent ecological concepts become increasingly complex. The globally important pelagic food web dynamics are well suited to test complex ecological concepts. For instance, trophic switches of individual organisms within pelagic food webs can elongate food webs or shift the balance between autotroph and heterotroph carbon fluxes. Here, we summarize results from mesocosm experiments demonstrating how environmental drivers result in trophic switches of marine phytoplankton and zooplankton communities. Such mesocosm experiments are useful to develop and test complex ecological concepts going beyond trophic level–based analyses, including diversity, individual behavior, and environmental stochasticity.
Item Type: | Journal article |
---|---|
EU Funded Grant Agreement Number: | 731065 |
EU Projects: | Horizon 2020 > European Research Infrastructures > AQUACOSM - Network of Leading European AQUAtic MesoCOSM Facilities Connecting Mountains to Oceans from the Arctic to the Mediterranean |
Form of publication: | Publisher's Version |
Keywords: | mesocosm; pelagic; trophic switches |
Faculties: | Biology > Department Biology II |
Subjects: | 500 Science > 500 Science |
URN: | urn:nbn:de:bvb:19-epub-69822-8 |
ISSN: | 2452-3100 |
Language: | English |
Item ID: | 69822 |
Date Deposited: | 02. Dec 2019, 14:11 |
Last Modified: | 04. Nov 2020, 13:51 |
References: | 1 C.M. Jessup, R. Kassen, S.E. Forde, B. Kerr, A. Buckling, P.B. Rainey, B.J.M. Bohannan Big questions, small worlds: microbial model systems in ecology Trends Ecol Evol, 19 (2004), pp. 189-197 2 F. Altermatt, E.A. Fronhofer, A. Garnier, A. Giometto, F. Hammes, J. Klecka, D. Legrand, E. Mächler, T.M. Massie, F. Pennekamp, et al. Big answers from small worlds: a user's guide for protest microcosms as a model system in ecology and evolution Methods Ecol Evol, 6 (2015), pp. 218-231 3 J.K. Frederickson Ecological communities by design Science, 348 (2015), pp. 1425-1427 4 U. Sommer, R. Adrian, L. De Senerpont Domis, J.R. Elser, U. Gaedke, B. Ibelings, E. Jeppesen, M. Lürling, J.C. Molinero, W.M. Mooij, M. Winder, E. van Donk, M. Winder Beyond the Plankton Ecology Group (PEG) model: mechanisms driving plankton succession Annu Rev Ecol Evol Syst, 43 (2012), pp. 429-448 5 T.F. Thingstad, M.D. Krom, R.F.C. Mantoura, G.A.F. Flaten, S. Groom, B. Herut, N. Kress, C. Law, A. Pasternak, P. Pitta, S. Psarra, F. Rassoulzadegan, T. Tanaka, A. Tselipides, P. Wassmann, E.M.S. Woodward, C. Wexels Riser, G. Zodiatis, T. Zohary Nature of P limitation in the ultraoligotrophic eastern mediterranean Science, 309 (2005), pp. 1068-1071 6 U. Riebesell, K. Lee, J.C. Nejstgaard Pelagic mesocosms U. Riebesell, V. Fabry, L. Hansson, J.-P. Gattuso (Eds.), Guide to best practices for ocean acidification research and data reporting, Publications Office of the European Union, Luxembourg (2010) 7 E. Litchman, P. Tezanos Pinto, K.F. Edwards, C.A. Klausmeier, C.T. Kremer, M.K. Thomas Global biogeochemical impacts of phytoplankton: a trait-based perspective J Ecol, 103 (2015), pp. 1384-1396 8 S. Menden-Deurer, T. Kiorboe Small bugs with a big impact: linking plankton ecology with ecosystem processes J Plankton Res, 38 (2016), pp. 1036-1043 9 N. Gruber Warming up, turning sour, losing breath: ocean biogeochemistry under global change Phil Trans Math Phys Eng Sci, 369 (2011), pp. 1980-1996 10 J. Rockström, W. Steffen, K. Noone, Å. Persson, F.S. Chapin III, E.F. Lambin, et al. A safe operating space for humanity Nature, 461 (2009), p. 472 11 W. Steffen, K. Richardson, J. Rockström, S.E. Cornell, I. Fetzer, E.M. Bennett, et al. Planetary boundaries: guiding human development on a changing planet Science, 347 (2015), p. 1259855 12 U. Sommer, E. Charalampous, M. Scotti, M. Moustaka-Gouni Big fish eat small fish: implications for food chain length? Community Ecol, 19 (2018), pp. 107-115 13 C.M. Duarte, A. Regaudie-de-Gioux, J.M. Arrieta, A. Delgado-Huertas, S. Agusti The oligotrophic ocean is heterotrophic Annu Rev Mar Sci, 5 (2013), pp. 551-569 14 S. Wollrab, S. Diehl, A.M. Roos Simple rules describe bottom-up and top-down control in food webs with alternative energy pathways Ecol Lett, 15 (2012), pp. 935-946 15 N.C. Rockwell, J.C. Lagarias, D. Bhattacharya Primary endosymbiosis and the evolution of light and oxygen sensing in photosynthetic eukaryotes Front Ecol Evol, 2 (2014), p. 66 16 D.K. Stoecker, M.D. Johnson, C. de Vargas, F. Not Acquired phototrophy in aquatic protists Aquat Microb Ecol, 57 (2009), pp. 279-310 17 K.J. Flynn, D.K. Stoecker, A. Mitra, J.A. Raven, P.M. Glibert, P.J. Hansen, et al. Misuse of the phytoplankton–zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types J Plankton Res, 35 (2012), pp. 3-11 ar 18 P.G. Falkowski, R.T. Barber, V. Smetacek Biogeochemical controls and feedbacks on ocean primary production Science, 281 (1998), pp. 200-206 19 M. Hartmann, C. Grob, G.A. Tarran, A.P. Martin, P.H. Burkill, D.J. Scanlan, M.V. Zubkov Mixotrophic basis of Atlantic oligotrophic ecosystems Proc Natl Acad Sci Unit States Am, 109 (2012), pp. 5756-5760 20 F. Azam, T. Fenchel, J.G. Field, J.S. Gray, L.A. Meyerreil, F. Thingstad The ecological role of water-column microbes in the sea Mar Ecol Prog Ser, 10 (1983), pp. 257-263 21 A. Mitra, K.J. Flynn, J.M. Burkholder, T. Berge, A. Calbet, J.A. Raven, et al. The role of mixotrophic protists in the biological carbon pump Biogeosciences, 11 (2014), pp. 995-1005 22 T. Fenchel Ecology of heterotrophic microflagellates. 11. Bioenergetics and growth Mar Ecol Prog Ser, 8 (1982), pp. 225-323 23 K.O. Rothhaupt Nutrient turnover by freshwater bacterivorous flagellates: differences between a heterotrophic and a mixotrophic chrysophyte Aquat Microb Ecol, 12 (1997), pp. 65-70 24 R. Ptacnik, A. Gomes, S.-J. Royer, S.A. Berger, A. Calbet, J.C. Nejstgaard, J.M. Gasol, S. Isari, S.D. Moorthi, R. Ptacnikova, M. Striebel, A.F. Sazhin, T.M. Tsagaraki, S. Zervoudaki, K. Altoja, P.D. Dimitriou, P. Laas, A. Gazihan, R.A. Martínez, S. Schabhüttl, I. Santi, D. Sousoni, P. Pitta A light-induced shortcut in the planktonic microbial loop Sci Rep, 6 (2016), p. 29286 Google Scholar 25 R. Fischer, H.A. Giebel, H. Hillebrand, R. Ptacnik Importance of mixotrophic bacterivory can be predicted by light and loss rates Oikos, 126 (2016), pp. 713-722 26 R. Ptacnik, U. Sommer, T. Hansen, V. Martens Effects of microzooplankton and mixotrophy in an experimental planktonic food web Limnol Oceanogr, 49 (4part2) (2004), pp. 1435-1445 27 H. Stibor, O. Vadstein, S. Diehl, A. Gelzleichter, T. Hansen, A. Katechakis, B. Lippert, K. Løseth, C. Peters, W. Roederer, M. Sandow, L. Sundt-Hansen, Y. Olsen Copepods act as a switch between alternative trophic cascades in marine pelagic food webs Ecol Lett, 7 (2004), pp. 321-328 28 S. Wilken, M. Soares, P. Urrutia-Cordero, J. Ratcovich, M.K. Ekvall, E. Van Donk, L.A. Hansson Primary producers or consumers? Increasing phytoplankton bacterivory along a gradient of lake warming and browning Limnol Oceanogr, 63 (2018), pp. 142-155 29 A.C. Hammer, J.W. Pitchford The role of mixotrophy in plankton bloom dynamics, and the consequences for productivity ICES J Mar Sci, 62 (2005), pp. 833-840 30 A. Katechakis, T. Haseneder, R. Kling, H. Stibor Mixotrophic vs. photoautotrophic specialist algae as food for zooplankton: the light:nutrient hypothesis might not hold for mixotrophs Limnol Oceanogr, 50 (2005), pp. 1290-1299 31 S.D. Moorthi, R. Ptacnik, R.W. Sanders, R. Fischer, M. Busch, H. Hillebrand The functional role of planktonic mixotrophs in altering seston stoichiometry Aquat Microb Ecol, 79 (2017), pp. 235-245 32 J.C. Nejstgaard, I. Gismervik, P.T. Solberg Feeding and reproduction by Calanus finmarchicus, and microzooplankton grazing during mesocosm blooms of diatoms and the coccolithophore Emiliania huxleyi Mar Ecol Prog Ser, 147 (1997), pp. 197-217 33 J.C. Nejstgaard, B.H. Hygum, L.-J. Naustvoll, U. Båmstedt Zooplankton growth, diet and reproductive success compared in simultaneous diatom- and flagellate-microzooplankton-dominated plankton blooms Mar Ecol Prog Ser, 221 (2001), pp. 77-91 34 J.R. Benavente-Valdés, A. Méndez-Zavala, L. Morales-Oyervides, Y. Chisti, J. Montañez Effects of shear rate, photoautotrophy and photoheterotrophy on production of biomass and pigments by Chlorella vulgaris J Chem Technol Biotechnol, 92 (2017), pp. 2453-2459 35 U. Sommer, T. Hansen, O. Blum, N. Holzner, O. Vadstein, H. Stibor Copepod and microzooplankton grazing in mesocosms fertilised with different Si:N ratios: no overlap between food spectra and Si:N influence on zooplankton trophic level Oecologia, 142 (2005), pp. 274-283 36 P. Pitta, J.C. Nejstgaard, T.M. Tsagaraki, S. Zervoudaki, J.K. Egge, C. Frangoulis, A. Lagaria, I. Magiopoulos, S. Psarra, R.-A. Sandaa, E.F. Skjoldal, T. Tanaka, R. Thyrhaug, T.F. Thingstad Confirming the “Rapid phosphorus transfer from microorganisms to mesozooplankton in the Eastern Mediterranean Sea” scenario through a mesocosm experiment J Plankton Res, 38 (2016), pp. 502-521 37 X.A.G. Morán, A. López-Urrutia, A. Calvo-Díaz, W.K.W. Li Increasing importance of small phytoplankton in a warmer ocean Global Change Biol, 16 (2016), pp. 1137-1144 38 E. Marañón, P. Cermeño, M. Latasa, R.M. Tadonléké Temperature, resources, and phytoplankton size structure in the ocean Limnol Oceanogr, 57 (2012), pp. 1266-1278 39 E. Marañón Cell size as a key determinant of phytoplankton metabolism and community structure Annu Rev Mar Sci, 7 (2015), pp. 241-264 40 A. López-Urrutia, X.A.G. Morán Temperature affects size-structure of phytoplankton communities in the ocean Limnol Oceanogr, 60 (2015), pp. 733-738 41 U. Sommer, A. Lewandowska Climate change and the phytoplankton spring bloom: warming and overwintering zooplankton have similar effects on phytoplankton Global Change Biol, 17 (2011), pp. 154-162 42 K.H. Peter, U. Sommer Phytoplankton cell size, inter- and intraspecific effects of warming and grazing PLoS One, 7 (2012), Article e49632 43 K.H. Peter, U. Sommer Phytoplankton cell size reduction in response to warming mediated by nutrient limitation PLoS One, 8 (2013), Article e71528 44 K.H. Peter, U. Sommer Interactive effect of warming, nitrogen and phosphorus limitation on phytoplankton cell size Ecol Evol, 5 (2015), pp. 1011-1024 45 U. Sommer, K.H. Peter, S. Genitsaris, M. Moustaka-Gouni Do marine phytoplankton follow Bergmann's rule sensu lato? Biol Rev, 92 (2017), pp. 1011-1026 46 D. Atkinson, B. Ciotti, D.I.S. Montagnes Protists decrease in size linearly with temperature: ca. 2.5% °C−1 Proc R Soc Lond B Biol Sci, 270 (2003), pp. 2605-2611 47 A.M. Lewandowska, D.G. Boyce, M. Hofmann, B. Matthiessen, U. Sommer, B. Worm Effects of sea surface warming on marine plankton Ecol Lett, 17 (2017), pp. 614-623 48 M. Winder, J.-M. Bouquet, J. Rafael Bermúdez, S.A. Berger, T. Hansen, J. Brandes, A.F. Sazhin, J.C. Nejstgaard, U. Båmstedt, H.H. Jakobsen, J. Dutz, M.E. Frischer, C. Troedsson, E.M. Thompson Increased appendicularian zooplankton alter carbon cycling under warmer more acidified ocean conditions Limnol Oceanogr, 62 (2017), pp. 1541-1551 49 P.G. Verity, V. Smetacek Organism life cycles, predation, and the structure of marine pelagic ecosystems Mar Ecol Prog Ser, 130 (1996), pp. 277-293 50 D.K. Steinberg, M.R. Landry Zooplankton and the ocean carbon cycle Annu Rev Mar Sci, 9 (2017), pp. 413-444 51 S.J. Daines, J.R. Clark, T.M. Lenton Multiple environmental controls on phytoplankton growth strategies determine adaptive responses of the N: P ratio Ecol Lett, 17 (2014), pp. 414-425 52 G. Yvon-Durocher, M. Dossena, M. Trimmer, G. Woodward, A.P. Allen Temperature and the biogeography of algal stoichiometry Global Ecol Biogeogr, 24 (2015), pp. 562-570 |