Abstract
BACKGROUND Statistical Process Monitoring (SPM) is not typically used in traditional quality assurance of inpatient care. While SPM allows a rapid detection of performance deficits, SPM results strongly depend on characteristics of the evaluated process. When using SPM to monitor inpatient care, in particular the hospital risk profile, hospital volume and properties of each monitored performance indicator (e.g. baseline failure probability) influence the results and must be taken into account to ensure a fair process evaluation. Here we study the use of CUSUM charts constructed for a predefined false alarm probability within a single process, i.e. a given hospital and performance indicator. We furthermore assess different monitoring schemes based on the resulting CUSUM chart and their dependence on the process characteristics. METHODS We conduct simulation studies in order to investigate alarm characteristics of the Bernoulli log-likelihood CUSUM chart for crude and risk-adjusted performance indicators, and illustrate CUSUM charts on performance data from the external quality assurance of hospitals in Bavaria, Germany. RESULTS Simulating CUSUM control limits for a false alarm probability allows to control the number of false alarms across different conditions and monitoring schemes. We gained better understanding of the effect of different factors on the alarm rates of CUSUM charts. We propose using simulations to assess the performance of implemented CUSUM charts. CONCLUSIONS The presented results and example demonstrate the application of CUSUM charts for fair performance evaluation of inpatient care. We propose the simulation of CUSUM control limits while taking into account hospital and process characteristics.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Medizin > Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
URN: | urn:nbn:de:bvb:19-epub-70619-6 |
ISSN: | 1472-6963 |
Sprache: | Englisch |
Dokumenten ID: | 70619 |
Datum der Veröffentlichung auf Open Access LMU: | 21. Feb. 2020, 13:27 |
Letzte Änderungen: | 04. Nov. 2020, 13:52 |