Logo Logo
Hilfe
Hilfe
Switch Language to English

Born, Frank; König, Fabian; Chen, Jinchi; Günther, Sabina; Hagl, Christian und Thierfelder, Nikolaus (2020): Generation of microbubbles in extracorporeal life support and assessment of new elimination strategies. In: Artificial Organs, Bd. 44, Nr. 3: S. 268-277 [PDF, 1MB]

Abstract

Occurrence of microbubbles (MB) is a major problem during venoarterial extracorporeal life support (ECLS) with partially severe clinical complications. The aim of this study was to establish an in vitro ECLS setup for the generation and detection of MB. Furthermore, we assessed different MB elimination strategies. Patient and ECLS circuit were simulated using reservoirs, a centrifugal pump, a membrane oxygenator, and an occluder (modified roller pump). The system was primed with a glycerin solution of 44%. Three different revolution speeds (2500, 3000, and 3400 rpm) were applied. For MB generation, the inflow line of the pump was either statically or dynamically (15 rpm) occluded. A bubble counter was used for MB detection. The effectiveness of the oxygenator and dynamic bubble traps (DBTs) was evaluated in regard to MB elimination capacities. MB generation was highly dependent on negative pressure at the inflow line. Increasing revolution speeds and restriction of the inflow led to increased MB activity. The significant difference between inflow and outflow MB volume identified the centrifugal pump as a main source. We could show that the oxygenator’s ability to withhold larger MB is limited. The application of one or multiple DBTs leads to a significant reduction in MB count and overall gas volume. The application of DBT can significantly reduce the overall gas volume, especially at high flow rates. Moreover, large MB can effectively be broken down for faster absorption. In general, the incidence of MBs is significantly dependent on pump speed and restriction of the inflow. The centrifugal pump was identified as a major source of MB generation.

Dokument bearbeiten Dokument bearbeiten