Abstract
Theories about the origin of life require chemical pathways that allow formation of life’s key building blocks under prebiotically plausible conditions. Complex molecules like RNA must have originated from small molecules whose reactivity was guided by physico-chemical processes. RNA is constructed from purine and pyrimidine nucleosides, both of which are required for accurate information transfer. This is the prerequisite for Darwinian evolution. While separate pathways to purines and pyrimidines have been reported, their concurrent syntheses remain a challenge. We report the synthesis of the pyrimidine nucleosides from small molecules and ribose, driven solely by wet-dry cycles. In the presence of phosphate-containing minerals, 5’-mono- and di-phosphates also form selectively in one-pot. The pathway is compatible with purine synthesis, allowing the concurrent formation of all Watson-Crick bases.
Dokumententyp: | Zeitschriftenartikel |
---|---|
EU Funded Grant Agreement Number: | 741912 |
EU-Projekte: | Horizon 2020 > ERC Grants > ERC Advanced Grant > ERC Grant 741912: EPiR - The Chemical Basis of RNA Epigenetics |
Publikationsform: | Postprint |
Fakultät: | Chemie und Pharmazie > Department Chemie |
Fakultätsübergreifende Einrichtungen: | Center for Integrated Protein Science Munich (CIPSM) |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 540 Chemie |
URN: | urn:nbn:de:bvb:19-epub-71503-3 |
ISSN: | 0036-8075; 1095-9203 |
Sprache: | Englisch |
Dokumenten ID: | 71503 |
Datum der Veröffentlichung auf Open Access LMU: | 02. Apr. 2020, 06:31 |
Letzte Änderungen: | 18. Mai 2021, 12:45 |
Literaturliste: | 1. J. A. Doudna, T. R. Cech, The chemical repertoire of natural ribozymes. Nature 418, 222-228 (2002). 2. D. P. Horning, G. F. Joyce, Amplification of RNA by an RNA polymerase ribozyme. Proc. Natl. Acad. Sci. 113, 9786-9791 (2016). 3. J. Attwater, A. Raguram, A. S. Morgunov, E. Gianni, P. Holliger, Ribozyme-catalysed RNA synthesis using triplet building blocks. eLife 7, e35255 (2018). 4. W. Gilbert, Origin of life: The RNA world. Nature 319, 618 (1986). 5. M. W. Powner, B. Gerland, J. D. Sutherland, Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459, 239 (2009). 6. S. Becker et al., A high-yielding, strictly regioselective prebiotic purine nucleoside formation pathway. Science 352, 833-836 (2016). 7. H.-J. Kim, S. A. Benner, Prebiotic stereoselective synthesis of purine and noncanonical pyrimidine nucleotide from nucleobases and phosphorylated carbohydrates. Proc. Natl. Acad. Sci. 114, 11315-11320 (2017). 8. S. Stairs et al., Divergent prebiotic synthesis of pyrimidine and 8-oxo-purine ribonucleotides. Nat. Commun. 8, 15270 (2017). 9. R. Saladino et al., Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation. Proc. Natl. Acad. Sci. 112, E2746-E2755 (2015). 10. J. Kasting, Earth's early atmosphere. Science 259, 920-926 (1993). 11. R. M. Hazen, Paleomineralogy of the Hadean Eon: A preliminary species list. Am. J. Sci. 313, 807-843 (2013). 12. E. D. Swanner et al., Cobalt and marine redox evolution. Earth. Planet. Sci. Lett. 390, 253-263 (2014). 13. P. B. Rimmer, O. Shorttle, Origin of Life’s Building Blocks in Carbon- and Nitrogen-Rich Surface Hydrothermal Vents. Life 9, 12 (2019). 14. W. Martin, J. Baross, D. Kelley, M. J. Russell, Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6, 805 (2008). 15. E. Camprubi, S. F. Jordan, R. Vasiliadou, N. Lane, Iron catalysis at the origin of life. IUBMB Life 69, 373-381 (2017). 16. S. A. Benner, H.-J. Kim, E. Biondi, in Prebiotic Chemistry and Chemical Evolution of Nucleic Acids, C. Menor-Salván, Ed. (Springer International Publishing, Cham, 2018), pp. 31-83. 17. S. Ranjan, Z. R. Todd, P. B. Rimmer, D. D. Sasselov, A. R. Babbin, Nitrogen Oxide Concentrations in Natural Waters on Early Earth. Geochem. Geophys. Geosyst. 20, 2021-2039 (2019). 18. S. Becker et al., Wet-dry cycles enable the parallel origin of canonical and non-canonical nucleosides by continuous synthesis. Nat. Commun. 9, 163 (2018). 19. P. Thaddeus, The prebiotic molecules observed in the interstellar gas. Philos. Trans. Royal Soc. B 361, 1681-1687 (2006). 20. R. A. Sanchez, J. P. Ferris, L. E. Orgel, Cyanoacetylene in Prebiotic Synthesis. Science 154, 784-785 (1966). 21. B. H. Patel, C. Percivalle, D. J. Ritson, C. D. Duffy, J. D. Sutherland, Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 7, 301 (2015). 22. H. Kofod, On the Isomerism of Hydroxyurea. I. Kinetics of the Reaction between Hydroxylammonium Ion and Cyanate Ion. Acta Chem. Scand. 7, 274-279 (1953). 23. K. B. Muchowska, S. J. Varma, J. Moran, Synthesis and breakdown of universal metabolic precursors promoted by iron. Nature 569, 104-107 (2019). 8 24. V. S. Airapetian, A. Glocer, G. Gronoff, E. Hébrard, W. Danchi, Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun. Nat. Geosci. 9, 452 (2016). 25. H. J. Cleaves, J. H. Chalmers, A. Lazcano, S. L. Miller, J. L. Bada, A Reassessment of Prebiotic Organic Synthesis in Neutral Planetary Atmospheres. Orig. Life Evol. Biosphere 38, 105-115 (2008). 26. D. P. Summers, S. Chang, Prebiotic ammonia from reduction of nitrite by iron (II) on the early Earth. Nature 365, 630-633 (1993). 27. R. Sukrit, T. Z. R., S. J. D., S. D. D., Sulfidic Anion Concentrations on Early Earth for Surficial Origins-of-Life Chemistry. Astrobiology 18, 1023-1040 (2018). 28. G. K. Rollefson, C. F. Oldershaw, The reduction of nitrites to hydroxylamine by sulfites. J. Am. Chem. Soc. 54, 977-979 (1932). 29. G. F. Joyce, The antiquity of RNA-based evolution. Nature 418, 214 (2002). 30. D. M. Fialho et al., Glycosylation of a model proto-RNA nucleobase with non-ribose sugars: implications for the prebiotic synthesis of nucleosides. Org. Biomol. Chem. 16, 1263-1271 (2018). 31. K. Hyo‐Joong et al., Evaporite Borate‐Containing Mineral Ensembles Make Phosphate Available and Regiospecifically Phosphorylate Ribonucleosides: Borate as a Multifaceted Problem Solver in Prebiotic Chemistry. Angew. Chem. Int. Ed. 55, 15816-15820 (2016). 32. A. Ricardo, M. A. Carrigan, A. N. Olcott, S. A. Benner, Borate Minerals Stabilize Ribose. Science 303, 196-196 (2004). 33. M. Kijima, Y. Nambu, T. Endo, Reduction of cyclic compounds having nitrogen-oxygen linkage by dihydrolipoamide-iron(II). J. Org. Chem. 50, 1140-1142 (1985). 34. G. Wächtershäuser, Before enzymes and templates: theory of surface metabolism. Microbiol. Rev. 52, 452-484 (1988). 35. U. Trinks, dir. A. Eschenmoser, ETH Zurich, Zurich (1987) (ETH e-collection 10.3929/ethz-a-000413538). 36. R. Krishnamurthy, On the Emergence of RNA. Isr. J. Chem. 55, 837-850 (2015). 37. J. Liebig, F. Wöhler, Untersuchungen über die Cyansäure. Ann. Phys. 96, 369-400 (1830). 38. M. Preiner et al., A hydrogen dependent geochemical analogue of primordial carbon and energy metabolism. bioRxiv, 682955 (2019). 39. C. Bonfio et al., Prebiotic iron–sulfur peptide catalysts generate a pH gradient across model membranes of late protocells. Nat. Catal. 1, 616-623 (2018). 40. O. Trapp, J. Teichert, F. Kruse, Direct Prebiotic Pathway to DNA Nucleosides. Angew. Chem. Int. Ed. 0. 41. J. Kofoed, J.-L. Reymond, T. Darbre, Prebiotic carbohydrate synthesis: zinc–proline catalyzes direct aqueous aldol reactions of α-hydroxy aldehydes and ketones. Org. Biomol. Chem. 3, 1850-1855 (2005). 42. C. Meinert et al., Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs. Science 352, 208-212 (2016). 43. K. Usami, A. Okamoto, Hydroxyapatite: catalyst for a one-pot pentose formation. Org. Biomol. Chem. 15, 8888-8893 (2017). |