Abstract
We consider Markov logic networks and relational logistic regression as two fundamental representation formalisms in statistical relational artificial intelligence that use weighted formulas in their specification. However, Markov logic networks are based on undirected graphs, while relational logistic regression is based on directed acyclic graphs. We show that when scaling the weight parameters with the domain size, the asymptotic behaviour of a relational logistic regression model can be described by a single Bayesian network and is transparently controlled by the provided weights. We also show using two examples that this is not true for Markov logic networks. We also discuss using several examples, mainly from the literature, how the application context can help the user to decide when such scaling is appropriate and when using the raw unscaled parameters might be preferable. We highlight random sampling as a particularly promising area of application for scaled models and expound possible avenues for further research.
Dokumententyp: | Paper |
---|---|
Keywords: | Markov logic networks; Relational logistic regression; Scaling by domain size; Bayesian networks |
Fakultät: | Mathematik, Informatik und Statistik > Informatik |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik |
URN: | urn:nbn:de:bvb:19-epub-71690-5 |
Sprache: | Englisch |
Dokumenten ID: | 71690 |
Datum der Veröffentlichung auf Open Access LMU: | 27. Apr. 2020, 07:08 |
Letzte Änderungen: | 27. Apr. 2020, 07:08 |
Literaturliste: | 1. Bauer, H. (1996) Probability theory. De Gruyter Studies in Mathematics, vol. 23. Berlin: Walter de Gruyter & Co. 2. Fagin, R. (1976) Probabilities on finite models. Journal of Symbolic Logic, 41(1):50-58. 3. Georgii, H.-O. (2011) Gibbs measures and phase transitions. De Gruyter Studies in Mathematics, vol. 9, 2nd edition. Berlin: Walter de Gruyter & Co. 4. Getoor, I., Taskar, B. (2007) Introduction to statistical relational learning. Cambridge, MA: The MIT Press. 5. Jaeger, M. (1998) Convergence Results for Relational Bayesian Networks. In Thirteenth Annual {IEEE} Symposium on Logic in Computer Science, Indianapolis, Indiana, USA, June 21-24, 1998. IEEE. 6. Jaeger, M., Schulte, O. (2018) Inference, learning and population size: Projectivity for SRL models. CoRR abs/1807.00564. 7. Jain, D., Barthels, A., Beetz, M. (2010) Adaptive Markov logic networks: learning statistical relational models with dynamic parameters. In Coelho, H., Studer, R., Wooldridge, M. J. (Eds.) ECAI 2010 - 19th European Conference on Artificial Intelligence, Lisbon, Portugal, August 16-20, 2010. Frontiers in Artificial Intelligence and Applications, vol. 215:937-942. Amsterdam: IOS Press. 8. Kazemi, S. M., Buchman, D., Kersting, K., Natarajan, S., Poole, D. (2014a) Relational Logistic Regression. In Baral, C., Giacomo G. D., Eiter, T. (Eds.) Principles of knowledge representation and reasoning: Proceedings of the Fourteenth International Conference, Vienna, Austria, July 20-24, 2014. Palo Alto, CA: AAAI Press. 9. Kazemi, S. M., Buchman, D., Kersting, K., Natarajan, S., Poole, D. (2014b) Relational Logistic Regression: the directed analog of Markov logic networks. AAAI Workshop on Statistical Relational Artificial Intelligence 2014, July 27-28, Quebec, Canada. Palo Alto, CA: AAAI press. 10. Lynch, J. F. (1985) Probabilities of first-order sentences about unary functions. Transactions of the American Mathematical Society, 287(2):543-568. 11. Mittal, H., Bhardwaj, A., Gogate, V., Singla, P. (2019) Domain-size aware Markov logic networks. In: Chaudhuri, K., Sugiyama, M. (Eds.) The 22nd International Conference on Artificial Intelligence and Statistics, AISTATS 2019, Naha, Japan, 16-18 April 2019. Proceedings of machine learning research , vol. 89:3216-3224. 12. Pearl, J. (1989) Probabilistic reasoning in intelligent systems - networks of plausible inference. Morgan Kaufmann series in representation and reasoning. Burlington, MA: Morgan Kaufmann. 13. Poole, D. (2003) First-order probabilistic inference. In: Gottlob, G., Walsh, T. (Eds.) Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, Acapulco, Mexico, August 9-15, 2003, 985-991. Burlington, MA: Morgan Kaufmann. 14. Poole, D., Buchman, D., Kazemi, S. M., Kersting, K., Natarajan, S. (2014) Population size extrapolation in relational probabilistic modelling. In: Straccia, U., Cali, A. (Eds.) Scalable Uncertainty Management - 8th International Conference, Oxford, UK, September 15-17, 2014. Lecture Notes in Computer Science vol. 8720:292-305. Berlin: Springer. 15. de Raedt, L., Kersting, K., Natarajan, S., Poole, D (2016) Statistical relational artificial intelligence: logic, probability and computation. Synthesis lectures on artificial intelligence and machine learning. Morgan & Claypool. 16. Ramanan, N., Kunapuli, G., Khot, T., Fatemi, B., Kazemi, S. M., Poole, D. et al. (2018) Structure learning for relational logistic regression: an ensemble approach. In: Thielscher, M., Toni, F., Wolter, F. (Eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the sixteenth international conference, Tempe, USA, October 30 - November 2, 2018. 661-670. Palo Alto, CA: AAAI press. 17. Richardson, M. & Domingos, P. M. (2006) Markov logic networks. Machine Learning 62(1-2):107-132. |