Abstract
The diversion of MHC class II-restricted thymocytes into the regulatory T (Treg) cell lineage, similarly to clonal deletion, is driven by intrathymic encounter of agonist self-antigens. Somewhat paradoxically, it thus seems that the expression of an autoreactive T cell receptor is a shared characteristic of T cells that are subject to clonal deletion and those that are diverted into the Treg cell lineage. Here, we discuss how thymocyte-intrinsic and -extrinsic determinants may specify the choice between these two fundamentally different T cell fates.
Item Type: | Journal article |
---|---|
EU Funded Grant Agreement Number: | 742290 |
EU Projects: | Horizon 2020 > ERC Grants > ERC Advanced Grant > ERC Grant 742290: TOLERANCE FOOTPRINT - Clonal Deletion versus Clonal Diversion: Footprints of Self-Tolerance in the T CellRepertoire |
Form of publication: | Postprint |
Keywords: | T cell selection; central tolerance; clonal deletion; regulatory T cell; promiscuous gene expression |
Faculties: | Medicine > Institute for Immunology |
Subjects: | 500 Science > 570 Life sciences; biology |
URN: | urn:nbn:de:bvb:19-epub-72470-5 |
ISSN: | 1474-1741 |
Language: | English |
Item ID: | 72470 |
Date Deposited: | 10. Jun 2020, 10:28 |
Last Modified: | 04. Nov 2020, 13:53 |
References: | 1 Kappler, J. W., Roehm, N. & Marrack, P. T cell tolerance by clonal elimination in the thymus. Cell 49, 273-280 (1987). 2 Kisielow, P., Bluthmann, H., Staerz, U. D., Steinmetz, M. & von Boehmer, H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 333, 742-746 (1988). 3 Modigliani, Y. et al. Lymphocytes selected in allogeneic thymic epithelium mediate dominant tolerance toward tissue grafts of the thymic epithelium haplotype. Proc. Natl. Acad. Sci. U S A 92, 7555-7559 (1995). 4 Ohki, H., Martin, C., Corbel, C., Coltey, M. & Le Douarin, N. M. Tolerance induced by thymic epithelial grafts in birds. Science 237, 1032-1035 (1987). 5 Salaun, J. et al. Thymic epithelium tolerizes for histocompatibility antigens. Science 247, 1471-1474 (1990). 6 Fowell, D. & Mason, D. Evidence that the T cell repertoire of normal rats contains cells with the potential to cause diabetes. Characterization of the CD4+ T cell subset that inhibits this autoimmune potential. J. Exp. Med. 177, 627-636 (1993). 7 Powrie, F., Leach, M. W., Mauze, S., Caddle, L. B. & Coffman, R. L. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int. immunol. 5, 1461-1471 (1993). 8 Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151-1164 (1995). 9 Thornton, A. M. et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol. 184, 3433-3441 (2010). 10 Weiss, J. M. et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J. Exp. Med. 209, 1723-1742, S1721 (2012). 11 Hsieh, C. S., Lee, H. M. & Lio, C. W. Selection of regulatory T cells in the thymus. Nature Rev. Immunol. 12, 157-167 (2012). 12 Klein, L. & Jovanovic, K. Regulatory T cell lineage commitment in the thymus. Semin. Immunol. 23, 401-409 (2011). 13 Bautista, J. L. et al. Intraclonal competition limits the fate determination of regulatory T cells in the thymus. Nature Immunol. 10, 610-617 (2009). 14 Leung, M. W., Shen, S. & Lafaille, J. J. TCR-dependent differentiation of thymic Foxp3+ cells is limited to small clonal sizes. J. Exp. Med. 206, 2121-2130 (2009). 15 Hsieh, C. S., Zheng, Y., Liang, Y., Fontenot, J. D. & Rudensky, A. Y. An intersection between the self-reactive regulatory and nonregulatory T cell receptor repertoires. Nature Immunol. 7, 401-410 (2006). 16 Pacholczyk, R., Ignatowicz, H., Kraj, P. & Ignatowicz, L. Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells. Immunity 25, 249-259 (2006). 17 Apostolou, I., Sarukhan, A., Klein, L. & von Boehmer, H. Origin of regulatory T cells with known specificity for antigen. Nature Immunol. 3, 756-763 (2002). 18 Jordan, M. S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nature Immunol. 2, 301-306 (2001). 19 Klein, L., Khazaie, K. & von Boehmer, H. In vivo dynamics of antigen-specific regulatory T cells not predicted from behavior in vitro. Proc. Natl. Acad. Sci. U S A 100, 8886-8891 (2003). 20 Picca, C. C. et al. Thymocyte deletion can bias Treg formation toward low-abundance self-peptide. Eur. J. Immunol. 39, 3301-3306 (2009). 21 Legoux, F. P. et al. CD4+ T Cell Tolerance to Tissue-Restricted Self Antigens Is Mediated by Antigen-Specific Regulatory T Cells Rather Than Deletion. Immunity 43, 896-908 (2015). Together with Ref 22, suggests that in the polyclonal repertoire, a TRA-like pattern of antigen expression favors Treg cell induction over deletion. 22 Malhotra, D. et al. Tolerance is established in polyclonal CD4(+) T cells by distinct mechanisms, according to self-peptide expression patterns. Nature Immunol. 17, 187-195 (2016). 23 Malchow, S. et al. Aire Enforces Immune Tolerance by Directing Autoreactive T Cells into the Regulatory T Cell Lineage. Immunity 44, 1102-1113 (2016). 24 Perry, J. S. et al. Distinct contributions of Aire and antigen-presenting-cell subsets to the generation of self-tolerance in the thymus. Immunity 41, 414-426 (2014). 25 Yang, S., Fujikado, N., Kolodin, D., Benoist, C. & Mathis, D. Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science 348, 589-594 (2015). 26 Anderson, M. S. et al. The cellular mechanism of Aire control of T cell tolerance. Immunity 23, 227-239 (2005). 27 DeVoss, J. et al. Spontaneous autoimmunity prevented by thymic expression of a single self-antigen. J. Exp. Med. 203, 2727-2735 (2006). 28 Klein, L., Klein, T., Ruther, U. & Kyewski, B. CD4 T cell tolerance to human C-reactive protein, an inducible serum protein, is mediated by medullary thymic epithelium. J. Exp. Med. 188, 5-16 (1998). 29 Liston, A., Lesage, S., Wilson, J., Peltonen, L. & Goodnow, C. C. Aire regulates negative selection of organ-specific T cells. Nature Immunol. 4, 350-354 (2003). 30 Taniguchi, R. T. et al. Detection of an autoreactive T-cell population within the polyclonal repertoire that undergoes distinct autoimmune regulator (Aire)-mediated selection. Proc. Natl. Acad. Sci. U S A 109, 7847-7852 (2012). 31 Kurd, N. & Robey, E. A. T-cell selection in the thymus: a spatial and temporal perspective. Immunol. Rev. 271, 114-126 (2016). 32 Petrie, H. T. & Zuniga-Pflucker, J. C. Zoned out: functional mapping of stromal signaling microenvironments in the thymus. Annu. Rev. Immunol. 25, 649-679 (2007). 33 Klein, L., Kyewski, B., Allen, P. M. & Hogquist, K. A. Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nature Rev. Immunol. 14, 377-391 (2014). 34 Ebert, P. J., Ehrlich, L. I. & Davis, M. M. Low ligand requirement for deletion and lack of synapses in positive selection enforce the gauntlet of thymic T cell maturation. Immunity 29, 734-745 (2008). 35 Peterson, D. A., DiPaolo, R. J., Kanagawa, O. & Unanue, E. R. Cutting edge: negative selection of immature thymocytes by a few peptide-MHC complexes: differential sensitivity of immature and mature T cells. J. Immunol. 162, 3117-3120 (1999). 36 Daley, S. R., Hu, D. Y. & Goodnow, C. C. Helios marks strongly autoreactive CD4+ T cells in two major waves of thymic deletion distinguished by induction of PD-1 or NF-kappaB. J. Exp. Med. 210, 269-285 (2013). 37 Stritesky, G. L. et al. Murine thymic selection quantified using a unique method to capture deleted T cells. Proc. Natl. Acad. Sci. U S A 110, 4679-4684 (2013). 38 Fontenot, J. D., Dooley, J. L., Farr, A. G. & Rudensky, A. Y. Developmental regulation of Foxp3 expression during ontogeny. J. Exp. Med. 202, 901-906 (2005). 39 Lee, H. M. & Hsieh, C. S. Rare development of Foxp3+ thymocytes in the CD4+CD8+ subset. J. Immunol. 183, 2261-2266 (2009). 40 Wirnsberger, G., Mair, F. & Klein, L. Regulatory T cell differentiation of thymocytes does not require a dedicated antigen-presenting cell but is under T cell-intrinsic developmental control. Proc. Natl. Acad. Sci. U S A 106, 10278-10283 (2009). 41 Kishimoto, H. & Sprent, J. Negative selection in the thymus includes semimature T cells. J. Exp. Med. 185, 263-271 (1997). 42 Le Borgne, M. et al. The impact of negative selection on thymocyte migration in the medulla. Nature Immunol. 10, 823-830 (2009). 43 Ueda, Y. et al. Mst1 regulates integrin-dependent thymocyte trafficking and antigen recognition in the thymus. Nature Commun. 3, 1098 (2012). 44 Dzhagalov, I. L., Chen, K. G., Herzmark, P. & Robey, E. A. Elimination of self-reactive T cells in the thymus: a timeline for negative selection. PLoS Biol. 11, e1001566 (2013). 45 Sauer, S. et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc. Natl. Acad. Sci. U S A 105, 7797-7802 (2008). 46 Khailaie, S., Robert, P. A., Toker, A., Huehn, J. & Meyer-Hermann, M. A signal integration model of thymic selection and natural regulatory T cell commitment. J. Immunol. 193, 5983-5996 (2014). 47 Au-Yeung, B. B. et al. Quantitative and temporal requirements revealed for Zap70 catalytic activity during T cell development. Nat Immunol 15, 687-694 (2014). 48 Daniels, M. A. et al. Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 444, 724-729 (2006). 49 Mariathasan, S. et al. Duration and strength of extracellular signal-regulated kinase signals are altered during positive versus negative thymocyte selection. J Immunol 167, 4966-4973 (2001). 50 Wu, L. & Shortman, K. Heterogeneity of thymic dendritic cells. Seminars in immunology 17, 304-312 (2005). 51 Hu, Z. et al. CCR7 Modulates the Generation of Thymic Regulatory T Cells by Altering the Composition of the Thymic Dendritic Cell Compartment. Cell Rep. 21, 168-180 (2017). 52 Hadeiba, H. et al. Plasmacytoid dendritic cells transport peripheral antigens to the thymus to promote central tolerance. Immunity 36, 438-450 (2012). 53 Yamano, T. et al. Thymic B Cells Are Licensed to Present Self Antigens for Central T Cell Tolerance Induction. Immunity 42, 1048-1061 (2015). 54 Yamano, T., Steinert, M. & Klein, L. Thymic B Cells and Central T Cell Tolerance. Front. Immunol. 6, 376 (2015). 55 Hinterberger, M. et al. Autonomous role of medullary thymic epithelial cells in central CD4(+) T cell tolerance. Nature Immunol. 11, 512-519 (2010). 56 Ohnmacht, C. et al. Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J. Exp. Med. 206, 549-559 (2009). 57 van Meerwijk, J. P. et al. Quantitative impact of thymic clonal deletion on the T cell repertoire. J. Exp. Med. 185, 377-383 (1997). 58 Malek, T. R. The biology of interleukin-2. Annu. Rev. Immunol. 26, 453-479 (2008). 59 Burchill, M. A. et al. Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity 28, 112-121 (2008). 60 Lio, C. W. & Hsieh, C. S. A two-step process for thymic regulatory T cell development. Immunity 28, 100-111 (2008). 61 Bending, D. et al. A timer for analyzing temporally dynamic changes in transcription during differentiation in vivo. J. Cell. Biol. (2018). 62 Marshall, D., Sinclair, C., Tung, S. & Seddon, B. Differential requirement for IL-2 and IL-15 during bifurcated development of thymic regulatory T cells. J. Immunol. 193, 5525-5533 (2014). 63 Tai, X. et al. Foxp3 transcription factor is proapoptotic and lethal to developing regulatory T cells unless counterbalanced by cytokine survival signals. Immunity 38, 1116-1128 (2013). 64 Bayer, A. L., Lee, J. Y., de la Barrera, A., Surh, C. D. & Malek, T. R. A function for IL-7R for CD4+CD25+Foxp3+ T regulatory cells. J. Immunol. 181, 225-234 (2008). 65 Vang, K. B. et al. IL-2, -7, and -15, but not thymic stromal lymphopoeitin, redundantly govern CD4+Foxp3+ regulatory T cell development. J. Immunol. 181, 3285-3290 (2008). 66 Yao, Z. et al. Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 109, 4368-4375 (2007). 67 Bayer, A. L., Yu, A., Adeegbe, D. & Malek, T. R. Essential role for interleukin-2 for CD4(+)CD25(+) T regulatory cell development during the neonatal period. J. Exp. Med. 201, 769-777 (2005). 68 Weist, B. M., Kurd, N., Boussier, J., Chan, S. W. & Robey, E. A. Thymic regulatory T cell niche size is dictated by limiting IL-2 from antigen-bearing dendritic cells and feedback competition. Nature Immunol. 16, 635-641 (2015). 69 Owen, D. L. et al. Identification of Cellular Sources of IL-2 Needed for Regulatory T Cell Development and Homeostasis. J. Immunol. 200, 3926-3933 (2018). 70 Boursalian, T. E., Golob, J., Soper, D. M., Cooper, C. J. & Fink, P. J. Continued maturation of thymic emigrants in the periphery. Nature Immunol. 5, 418-425 (2004). 71 Yang-Snyder, J. A. & Rothenberg, E. V. Spontaneous expression of interleukin-2 in vivo in specific tissues of young mice. Dev. Immunol. 5, 223-245 (1998). 72 Wuest, S. C. et al. A role for interleukin-2 trans-presentation in dendritic cell-mediated T cell activation in humans, as revealed by daclizumab therapy. Nature Med. 17, 604-609 (2011). 73 Thiault, N. et al. Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors. Nature Immunol. 16, 628-634 (2015). 74 Cowan, J. E. et al. Aire controls the recirculation of murine Foxp3(+) regulatory T-cells back to the thymus. Eur. J. Immunol. 48, 844-854 (2018). 75 Moran, A. E. et al. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J. Exp. Med. 208, 1279-1289 (2011). 76 D'Cruz, L. M. & Klein, L. Development and function of agonist-induced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nature Immunol. 6, 1152-1159 (2005). 77 Kishimoto, H. & Sprent, J. Several different cell surface molecules control negative selection of medullary thymocytes. J. Exp. Med. 190, 65-73 (1999). 78 Rubin, R. L. & Hermanson, T. M. Plasticity in the positive selection of T cells: affinity of the selecting antigen and IL-7 affect T cell responsiveness. Int. Immuno.l 17, 959-971 (2005). 79 Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431-440 (2000). 80 Tai, X., Cowan, M., Feigenbaum, L. & Singer, A. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nature Immunol. 6, 152-162 (2005). 81 Lio, C. W., Dodson, L. F., Deppong, C. M., Hsieh, C. S. & Green, J. M. CD28 facilitates the generation of Foxp3(-) cytokine responsive regulatory T cell precursors. J. Immunol. 184, 6007-6013 (2010). 82 Vang, K. B. et al. Cutting edge: CD28 and c-Rel-dependent pathways initiate regulatory T cell development. J. Immunol. 184, 4074-4077 (2010). 83 Hinterberger, M., Wirnsberger, G. & Klein, L. B7/CD28 in central tolerance: costimulation promotes maturation of regulatory T cell precursors and prevents their clonal deletion. Front. Immunol. 2, 30 (2011). 84 Murray, M. E. et al. CD28-mediated pro-survival signaling induces chemotherapeutic resistance in multiple myeloma. Blood 123, 3770-3779 (2014). 85 Bouillet, P. et al. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415, 922-926 (2002). 86 Ouyang, W., Beckett, O., Ma, Q. & Li, M. O. Transforming growth factor-beta signaling curbs thymic negative selection promoting regulatory T cell development. Immunity 32, 642-653 (2010). 87 Punt, J. A., Havran, W., Abe, R., Sarin, A. & Singer, A. T cell receptor (TCR)-induced death of immature CD4+CD8+ thymocytes by two distinct mechanisms differing in their requirement for CD28 costimulation: implications for negative selection in the thymus. J. Exp. Med. 186, 1911-1922 (1997). 88 Dautigny, N., Le Campion, A. & Lucas, B. Timing and casting for actors of thymic negative selection. J. Immunol. 162, 1294-1302 (1999). 89 Jones, L. A., Izon, D. J., Nieland, J. D., Linsley, P. S. & Kruisbeek, A. M. CD28-B7 interactions are not required for intrathymic clonal deletion. Int. Immunol. 5, 503-512 (1993). 90 Page, D. M., Kane, L. P., Allison, J. P. & Hedrick, S. M. Two signals are required for negative selection of CD4+CD8+ thymocytes. J. Immunol. 151, 1868-1880 (1993). 91 Tan, R., Teh, S. J., Ledbetter, J. A., Linsley, P. S. & Teh, H. S. B7 costimulates proliferation of CD4-8+ T lymphocytes but is not required for the deletion of immature CD4+8+ thymocytes. J. Immunol. 149, 3217-3224 (1992). 92 Walunas, T. L., Sperling, A. I., Khattri, R., Thompson, C. B. & Bluestone, J. A. CD28 expression is not essential for positive and negative selection of thymocytes or peripheral T cell tolerance. J. Immunol. 156, 1006-1013 (1996). 93 Pobezinsky, L. A. et al. Clonal deletion and the fate of autoreactive thymocytes that survive negative selection. Nature Immunol. 13, 569-578 (2012). 94 Collette, Y., Benziane, A., Razanajaona, D. & Olive, D. Distinct regulation of T-cell death by CD28 depending on both its aggregation and T-cell receptor triggering: a role for Fas-FasL. Blood 92, 1350-1363 (1998). 95 Li, M. O. & Flavell, R. A. TGF-beta: a master of all T cell trades. Cell 134, 392-404 (2008). 96 Chen, W. et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 198, 1875-1886 (2003). 97 Kretschmer, K. et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nature Immunol. 6, 1219-1227 (2005). 98 Zheng, Y. et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463, 808-812 (2010). 99 Li, M. O., Sanjabi, S. & Flavell, R. A. Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 25, 455-471 (2006). 100 Marie, J. C., Letterio, J. J., Gavin, M. & Rudensky, A. Y. TGF-beta1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J. Exp. Med. 201, 1061-1067 (2005). 101 Liu, Y. et al. A critical function for TGF-beta signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nature Immunol. 9, 632-640 (2008). 102 Chen, W. et al. Requirement for transforming growth factor beta1 in controlling T cell apoptosis. J. Exp. Med. 194, 439-453 (2001). 103 Schlenner, S. M., Weigmann, B., Ruan, Q., Chen, Y. & von Boehmer, H. Smad3 binding to the foxp3 enhancer is dispensable for the development of regulatory T cells with the exception of the gut. J. Exp. Med. 209, 1529-1535 (2012). 104 Konkel, J. E., Jin, W., Abbatiello, B., Grainger, J. R. & Chen, W. Thymocyte apoptosis drives the intrathymic generation of regulatory T cells. Proc. Natl. Acad. Sci. U S A 111, E465-473 (2014). 105 Chen, W. & Konkel, J. E. Development of thymic Foxp3(+) regulatory T cells: TGF-beta matters. Eur. J. Immunol. 45, 958-965 (2015). 106 Anderson, M. S. et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 298, 1395-1401 (2002). 107 Derbinski, J., Schulte, A., Kyewski, B. & Klein, L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nature Immunol. 2, 1032-1039 (2001). 108 Mathis, D. & Benoist, C. A decade of AIRE. Nature Rev. Immunol. 7, 645-650 (2007). 109 Peterson, P., Org, T. & Rebane, A. Transcriptional regulation by AIRE: molecular mechanisms of central tolerance. Nature Rev. Immunol. 8, 948-957 (2008). 110 Derbinski, J. et al. Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J. Exp. Med. 202, 33-45 (2005). 111 Takaba, H. et al. Fezf2 Orchestrates a Thymic Program of Self-Antigen Expression for Immune Tolerance. Cell 163, 975-987 (2015). 112 Sansom, S. N. et al. Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia. Genome. Res. 24, 1918-1931 (2014). 113 Smith, K. M., Olson, D. C., Hirose, R. & Hanahan, D. Pancreatic gene expression in rare cells of thymic medulla: evidence for functional contribution to T cell tolerance. Int. Immunol. 9, 1355-1365 (1997). 114 Brennecke, P. et al. Single-cell transcriptome analysis reveals coordinated ectopic gene-expression patterns in medullary thymic epithelial cells. Nature Immunol. 16, 933-941 (2015). 115 Meredith, M., Zemmour, D., Mathis, D. & Benoist, C. Aire controls gene expression in the thymic epithelium with ordered stochasticity. Nature Immunol. 16, 942-949 (2015). 116 Nedjic, J., Aichinger, M., Mizushima, N. & Klein, L. Macroautophagy, endogenous MHC II loading and T cell selection: the benefits of breaking the rules. Curr. Opin. Immunol. 21, 92-97 (2009). 117 Bonasio, R. et al. Clonal deletion of thymocytes by circulating dendritic cells homing to the thymus. Nature Immunol. 7, 1092-1100 (2006). 118 Perry, J. S. A. et al. CD36 Mediates Cell-Surface Antigens to Promote Thymic Development of the Regulatory T Cell Receptor Repertoire and Allo-tolerance. Immunity 48, 923-936 e924 (2018). 119 Lee, H. M., Bautista, J. L., Scott-Browne, J., Mohan, J. F. & Hsieh, C. S. A broad range of self-reactivity drives thymic regulatory T cell selection to limit responses to self. Immunity 37, 475-486 (2012). 120 Simons, D. M. et al. How specificity for self-peptides shapes the development and function of regulatory T cells. J. Leukoc. Biol. 88, 1099-1107 (2010). 121 Atibalentja, D. F., Murphy, K. M. & Unanue, E. R. Functional redundancy between thymic CD8alpha+ and Sirpalpha+ conventional dendritic cells in presentation of blood-derived lysozyme by MHC class II proteins. J. Immunol. 186, 1421-1431 (2011). 122 Feuerer, M. et al. Enhanced thymic selection of FoxP3+ regulatory T cells in the NOD mouse model of autoimmune diabetes. Proc. Natl. Acad. Sci. U S A 104, 18181-18186 (2007). 123 Relland, L. M. et al. Affinity-based selection of regulatory T cells occurs independent of agonist-mediated induction of Foxp3 expression. J. Immunol. 182, 1341-1350 (2009). |