Abstract
The reliable detection of transcription events through the quantification of the corresponding mRNA is of paramount importance for the diagnostics of infections and diseases. The quantification and localization analysis of the transcripts of a particular gene allows disease states to be characterized more directly compared to an analysis on the transcriptome wide level. This is particularly needed for the early detection of virus infections as now required for emergent viral diseases, e. g. Covid-19. In situ mRNA analysis, however, is a formidable challenge and currently performed with sets of single-fluorophore-containing oligonucleotide probes that hybridize to the mRNA in question. Often a large number of probe strands (>30) are required to get a reliable signal. The more oligonucleotide probes are used, however, the higher the potential offtarget binding effects that create background noise. Here, we used click chemistry and alkyne-modified DNA oligonucleotides to prepare multiple-fluorophore-containing probes. We found that these multiple-dye probes allow reliable detection and direct visualization of mRNA with only a very small number (5–10) of probe strands. The new method enabled the in situ detection of viral transcripts as early as 4 hours after infection.
Dokumententyp: | Zeitschriftenartikel |
---|---|
EU Funded Grant Agreement Number: | 741912 |
EU-Projekte: | Horizon 2020 > ERC Grants > ERC Advanced Grant > ERC Grant 741912: EPiR - The Chemical Basis of RNA Epigenetics |
Publikationsform: | Publisher's Version |
Keywords: | click chemistry; fluorescence probes; mRNA detection; RNA-FISH; viral infection |
Fakultät: | Chemie und Pharmazie > Department Chemie |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 540 Chemie |
URN: | urn:nbn:de:bvb:19-epub-72514-0 |
ISSN: | 1439-7633 |
Sprache: | Englisch |
Dokumenten ID: | 72514 |
Datum der Veröffentlichung auf Open Access LMU: | 17. Jun. 2020, 07:49 |
Letzte Änderungen: | 04. Nov. 2020, 13:53 |
Literaturliste: | [1] A. Raj, A. Van Oudenaarden, Cell 2008, 135, 216–226. [2] A. Eldar, M. B. Elowitz, Nature 2010, 467, 167–173. [3] S. Itzkovitz, A. van Oudenaarden, Nat. Methods 2011, 8, 12–19. [4] A. Raj, P. van den Bogaard, S. A. Rifkin, A. van Oudenaarden, S. Tyagi, Nat. Methods 2008, 5, 877–879. [5] A. Raj, S.Tyagi. Detection of individual endogenous RNA transcripts in situ using multiple singly labeled probes. In: Single molecule Tools: Chapter 17, Fluorescence based approaches, Part A; Walter, N. G. B. T.- M. in E., Ed.; Academic Press, 2010, 472, 365–368. [6] S. Semrau, N. Crosetto, M. Bienko, M. Boni, P. Bernasconi, Cell Rep. 2011, 6, 18–23. [7] T. Muramoto, D. Cannon, M. Gierliński, A. Corrigan, G. J. Barton, J. R. Chubb, Proc. Mont. Acad. Sci. 2012, 109, 7350–7355. [8] A. M. Femino, F. S. Fay, K. Fogarty, R. H. Singer, Science 1998, 280, 585– 590. [9] C. Larsson, I. Grundberg, O. Söderberg, M. Nilsson, Nat. Methods 2010, 7, 395–397. [10] T. Trcek, T. Lionnet, H. Shroff, R. Lehmann, Nat. Protoc. 2017, 12, 1326– 1348. [11] H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2001, 40, 2004–2021; Angew. Chem. 2001, 113, 2056–2075. [12] K. V. Gothelf, K. A. Jørgensen, Chem. Rev. 1998, 98, 863–910. [13] S. Bräse, C. Gil, K. Knepper, V. Zimmermann, Angew. Chem. Int. Ed. 2005, 44, 5188–5240. [14] C. W. Tornøe, C. Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057–3064. [15] V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596–2599. [16] K. Gutsmiedl, D. Fazio, T. Carell, Chem. Eur. J. 2010, 16, 6877–6883. [17] J. Gierlich, G. A. Burley, P. M. E. Gramlich, D. M. Hammond, T. Carell, Org. Lett. 2006, 8, 3639–3642. [18] P. M. E. Gramlich, S. Warncke, J. Gierlich, T. Carell, Angew. Chem. Int. Ed. 2008, 47, 8350–8358. [19] P. M. E. Gramlich, C. T. Wirges, A. Manetto, T. Carell, Angew. Chem. Int. Ed. 2008, 47, 8350–8358. [20] S. Hesse, A. Manetto, V. Cassinelli, J. Fuchs, L. Ma, N. Raddaoui, A. Houben, Chromosom. Res. 2016, 24, 299–307. [21] J. Gierlich, G. A. Burley, P. M. E. Gramlich, D. M. Hammond, T. Carell, Org. Lett. 2006, 8, 3639–3642. [22] R. Arrigucci, Y. Bushkin, F. Radford, K. Lakehal, P. Vir, R. Pine, D. Martin, J. Sugarman, Y. Zhao, G. S. Yap, Nat. Protoc. 2017, 12, 1245–1260. [23] A. Borodavka, E. C. Dykeman, W. Schrimpf, D. C. Lamb, elife 2017, 6, e27453. [24] F. Rodriguez, O. R. Burrone, C. Eichwald, J. Gen. Virol. 2004, 85, 625–634. [25] E. N. Salgado, S. Upadhyayula, S. C. Harrison, J. Virol. 2017, 91, e00651–17. [26] A. Borodavka, U. Desselberger, J. T. Patton, Curr. Opin. Virol. 2018, 33, 106–112. |