Abstract
Queuosine (Q) is a hypermodified RNA nucleoside that is found in tRNA-His, tRNA-Asn, tRNA-Tyr, and tRNA-Asp. It is located at the wobble position of the tRNA anticodon loop, where it can interact with U as well as C bases located at the respective position of the corresponding mRNA codons. In tRNA-Tyr and tRNA-Asp of higher eukaryotes, including humans, the Q base is for yet unknown reasons further modified by the addition of a galactose and a mannose sugar, respectively. The reason for this additional modification, and how the sugar modification is orchestrated with Q formation and insertion, is unknown. Here, we report a total synthesis of the hypermodified nucleoside galactosyl-queuosine (galQ). The availability of the compound enabled us to study the absolute levels of the Q-family nucleosides in six different organs of newborn and adult mice, and also in human cytosolic tRNA. Our synthesis now paves the way to a more detailed analysis of the biological function of the Q-nucleoside family.
Dokumententyp: | Zeitschriftenartikel |
---|---|
EU Funded Grant Agreement Number: | 741912 |
EU-Projekte: | Horizon 2020 > ERC Grants > ERC Advanced Grant > ERC Grant 741912: EPiR - The Chemical Basis of RNA Epigenetics |
Publikationsform: | Publisher's Version |
Keywords: | galactosylation; mannosylation; mannosyl-queuosine; queuosine; RNA modifications |
Fakultät: | Chemie und Pharmazie > Department Chemie |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 540 Chemie |
URN: | urn:nbn:de:bvb:19-epub-72515-5 |
ISSN: | 1521-3773 |
Sprache: | Englisch |
Dokumenten ID: | 72515 |
Datum der Veröffentlichung auf Open Access LMU: | 17. Jun. 2020, 08:10 |
Letzte Änderungen: | 04. Nov. 2020, 13:53 |
Literaturliste: | [1] P. Boccaletto, M. A. Machnicka, E. Purta, P. Piatkowski, B.Baginski, T. K. Wirecki, V. de Crécy-Lagard, R. Ross, P. A. Limbach, A. Kotter, M. Helm, J. M. Bujnicki, Nucleic Acids Res. 2018, 46, D303 – D307. [2] F. Harada, S. Nishimura, Biochemistry 1972, 11, 301 – 308. [3] H. Kasai, Y. Kuchino, K. Nihei, S. Nishimura, Nucleic Acids Res. 1975, 2, 1931 – 1940. [4] H. Grosjean, M. Sprinzl, S. Steinberg, Biochemie 1995, 77, 139 – 141. [5] A. Costa, J.-P. Pais de Barros, G. Keith, W. Baranowski, J. Desgrès, J. Chromatogr. B 2004, 801, 237 – 247. [6] D. Globisch, D. Pearson, A. Hienzsch, T. Brückl, M. Wagner, I. Thoma, P. Thumbs, V. Reiter, A. C. Kneuttinger, M. Müller, S. A. Sieber, T. Carell, Angew. Chem. Int. Ed. 2011, 50, 9739 – 9742; Angew. Chem. 2011, 123, 9913 – 9916. [7] C. Brandmayr, M. Wagner, T. Brückl, D. Globisch, D. Pearson, A. C. Kneuttinger, V. Reiter, A. Hienzsch, S. Koch, I. Thoma, P. Thumbs, S. Michalakis, M. Müller, M. Biel, T. Carell, Angew. Chem. Int. Ed. 2012, 51, 11162 – 11165; Angew. Chem. 2012, 124, 11324 – 11328. [8] T. Suzuki, T. Suzuki, Nucleic Acids Res. 2014, 42, 7346 – 7357. [9] N. Okada, N. Shindo-Okada, S. Nishimura, Nucleic Acids Res. 1977, 4, 415 – 423. [10] N. Okada, S. Nishimura, Nucleic Acids Res. 1977, 4, 2931 – 2937. [11] H. Kasai, K. Nakanishi, R. D. Macfarlane, D. F. Torgerson, Z. Ohashi, J. A. McCloskey, H. J. Gross, S. Nishimura, J. Am. Chem. Soc. 1976, 98, 5044 – 5046. [12] T. Ohgi, T. Kondo, T. Goto, J. Am. Chem. Soc. 1979, 101, 3629 – 3633. [13] T. Kondo, K. Okamoto, T. Ohgi, T. Goto, Tetrahedron 1986, 42, 207 – 213. [14] F. Klepper, E.-M. Jahn, V. Hickmann, T. Carell, Angew. Chem. Int. Ed. 2007, 46, 2325 – 2327; Angew. Chem. 2007, 119, 2377 – 2379. [15] A. M. Szpilman, E. M. Carreira, Org. Lett. 2009, 11, 1305 – 1307. [16] D. Crich, T. J. Ritchie, Carbohydr. Res. 1989, 190, C3 – C6. [17] U. P. Singhi, R. K. Brown, Can. J. Chem. 1971, 49, 1179 – 1186. [18] D. Vonlanthen, C. J. Leumann, Synthesis 2003, 1087 – 1090. [19] H. Ovaa, B. Lastdrager, J. D. C. Codée, G. A. van der Marel, H. S. Overkleeft, J. H. van Boom, J. Chem. Soc. Perkin Trans. 1 2002, 2370 – 2377. [20] A. M. Szpilman, J. M. Manthorpe, E. M. Carreira, Angew. Chem. Int. Ed. 2008, 47, 4339 – 4342; Angew. Chem. 2008, 120, 4411 – 4414. [21] J. P. Reyniers, J. R. Pleasants, B. S.Wostmann, J. R. Katze, W. R. Farkas, J. Biol. Chem. 1981, 256, 11591 – 11594. [22] J. R. Katze, B. Basile, J. A. McCloskey, Science 1982, 216, 55 – 56. [23] W. R. Farkas, J. Biol. Chem. 1980, 255, 6832 – 6835. [24] N. Okada, F. Harada, S. Nishimura, Nucleic Acids Res. 1976, 3, 2593 – 2604. [25] N. Shindo-Okada, N. Okada, T. Ohgi, T. Goto, S. Nishimura, Biochemistry 1980, 19, 395 – 400. [26] C. Boland, P. Hayes, I. Santa-Maria, S. Nishimura, V. P. Kelly, J. Biol. Chem. 2009, 284, 18218 – 18227. [27] F. Tuorto, C. Legrand, C. Cirzi, G. Federico, R. Liebers, M. Müller, A. E. Ehrenhofer-Murray, G. Dittmar, H.-J. Gröne, F. Lyko, EMBO J. 2018, 37, e99777. |