Abstract
The removal of 5-methyl-deoxycytidine (mdC) from promoter elements is associated with reactivation of the silenced corresponding genes. It takes place through an active demethylation process involving the oxidation of mdC to 5-hydroxymethyl-deoxycytidine (hmdC) and further on to 5-formyl-deoxycytidine (fdC) and 5-carboxy-deoxycytidine (cadC) with the help of a-ketoglutarate-dependent Tet oxygenases. The next step can occur through the action of a glycosylase (TDG), which cleaves fdC out of the genome for replacement by dC. A second pathway is proposed to involve C-C bond cleavage that converts fdC directly into dC. A 6-aza-5-formyl-deoxycytidine (a-fdC) probe molecule was synthesized and fed to various somatic cell lines and induced mouse embryonic stem cells, together with a 2’-fluorinated fdC analogue (F-fdC). While deformylation of F-fdC was clearly observed in vivo, it did not occur with a-fdC, thus suggesting that the C-C bond-cleaving deformylation is initiated by nucleophilic activation.
Dokumententyp: | Zeitschriftenartikel |
---|---|
EU Funded Grant Agreement Number: | 741912 |
EU-Projekte: | Horizon 2020 > ERC Grants > ERC Advanced Grant > ERC Grant 741912: EPiR - The Chemical Basis of RNA Epigenetics |
Publikationsform: | Publisher's Version |
Keywords: | demethylation; DNA modifications; epigenetics; formylcytidine |
Fakultät: | Chemie und Pharmazie > Department Chemie |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 540 Chemie |
URN: | urn:nbn:de:bvb:19-epub-72516-1 |
ISSN: | 1521-3773 |
Sprache: | Englisch |
Dokumenten ID: | 72516 |
Datum der Veröffentlichung auf Open Access LMU: | 17. Jun. 2020, 08:15 |
Letzte Änderungen: | 04. Nov. 2020, 13:53 |
Literaturliste: | [1] M. Wagner, J. Steinbacher, T. F. J. Kraus, S. Michalakis, B. Hackner, T. Pfaffeneder, A. Perera, M. Müller, A. Giese, H. A. Kretzschmar, T. Carell, Angew. Chem. Int. Ed. 2015, 54, 12511-12514. [2] S. Liu, J. Wang, Y. Su, C. Guerrero, Y. Zeng, D. Mitra, P. J. Brooks, D. E. Fisher, H. Song, Y. Wang, Nucleic Acids Res. 2013, 41, 6421-6429. [3] C. X. Song, K. E. Szulwach, Q. Dai, Y. Fu, S. Q. Mao, L. Lin, C. Street, Y. Li, M. Poidevin, H. Wu, J. Gao, P. Liu, L. Li, G. L. Xu, P. Jin, C. He, Cell 2013, 153, 678-691. [4] T. Pfaffeneder, B. Hackner, M. Truss, M. Münzel, M. Müller, C. A. Deiml, C. Hagemeier, T. Carell, Angew. Chem. Int. Ed. 2011, 50, 7008-7012. [5] M. Bachman, S. Uribe-Lewis, X. Yang, H. E. Burgess, M. Iurlaro, W. Reik, A. Murrell, S. Balasubramanian, Nat. Chem. Biol. 2015, 11, 555-557. [6] S. Kriaucionis, N. Heintz, Science 2009, 324, 929-930. [7] D. Q. Shi, I. Ali, J. Tang, W. C. Yang, Front.Genet. 2017, 8, 100. [8] M. Münzel, D. Globisch, T. Carell, Angew. Chem. Int. Ed. 2011, 50 6460-6468. [9] C. G. Spruijt, F. Gnerlich, A. H. Smits, T. Pfaffeneder, P. W. T. C. Jansen, C. Bauer, M. Münzel, M. Wagner, M. Müller, F. Khan, H. C. Eberl, A. Mensinga, A. B. Brinkman, K. Lephikov, U. Müller, J. Walter, R. Boelens, H. Van Ingen, H. Leonhardt, T. Carell, M. Vermeulen, Cell 2013, 152, 1146-1159. [10] S. Ito, L. Shen, Q. Dai, S. C. Wu, L. B. Collins, J. A. Swenberg, C. He, Y. Zhang, Science 2011, 333, 1300-1303. [11] F. Neri, D. Incarnato, A. Krepelova, S. Rapelli, F. Anselmi, C. Parlato, C. Medana, F. DalBello, S. Oliviero, Cell Rep. 2015, 10, 674-683. [12] M. Su, A. Kirchner, S. Stazzoni, M. Müller, M. Wagner, A. Schröder, T. Carell, Angew. Chem. Int. Ed. 2016, 55, 11797-11800. [13] T. Fu, L. Liu, Q. L. Yang, Y. Wang, P. Xu, L. Zhang, S. Liu, Q. Dai, Q. Ji, G. L. Xu, C. He, C. Luo, L. Zhang, Chem. Sci. 2019, 10, 7407-7417. [14] R. Rahimoff, O. Kosmatchev, A. Kirchner, T. Pfaffeneder, F. Spada, V. Brantl, M. Müller, T. Carell, J. Am. Chem. Soc. 2017, 139, 10359-10364. [15] S. Schiesser, T. Pfaffeneder, K. Sadeghian, B. Hackner, B. Steigenberger, A. S. Schröder, J. Steinbacher, G. Kashiwazaki, G. Höfner, K. T. Wanner, C. OChsenfeld, T. Carell, J. Am. Chem. Soc. 2013, 135, 14593-14599. [16] S. Schiesser, B. Hackner, T. Pfaffeneder, M. Müller, C. Hagemeier, M. Truss, T. Carell, Angew. Chem. Int. Ed. 2012, 51, 6516 - 6520. [17] K. Iwan, R. Rahimoff, A. Kirchner, F. Spada, A. S. Schröder, O. Kosmatchev, S. Ferizaj, J. Steinbacher, E. Parsa, M. Müller, T. Carell, Nat. Chem. Biol. 2018, 14, 72-78. [18] A. Jeltsch, ChemBioChem 2002, 3, 274-293. [19] Q. Du, Z. Wang, V. L. Schramm, Proc. Natl. Acad. Sci. USA 2016, 113, 2916-2921. [20] I. V. Alekseeva, A. S. Shalamai, V. S. Shalamai, V. P. Chernetski., Ukr. Khim. Zh. 1976, 42, 398-401. [21] F. R. Traube, S. Schiffers, K. Iwan, S. Kellner, F. Spada, M. Müller, T. Carell, Nat. Protoc. 2019, 14, 283 - 312. [22] E. Kriukiene, Z. Liutkevičiute, S. Klimašauskas, Chem. Soc. Rev. 2012, 41, 6916-6930 |