Abstract
Lysidine (k2C) is one of the most modified pyrimidine RNA bases. It is a cytidine nucleoside, in which the 2-oxo functionality of the heterocycle is replaced by the ɛ-amino group of the amino acid lysine. As such, lysidine is an amino acid-containing RNA nucleoside that combines directly genotype (C-base) with phenotype (lysine amino acid). This makes the compound particularly important in the context of theories about the origin of life and here especially for theories that target the origin of translation. Here, we report the total synthesis of the Uderivative of lysidine (k2U), which should have the same base pairing characteristics as k2C if it exists in the isoC- like tautomeric form. To investigate this question, we developed a phosphoramidite building block for k2U, which allows its incorporation into RNA strands. Within RNA, k2U can base pair with the counter base U and isoG, confirming that k2U prefers an isoC-like tautomeric structure that is also known to dominate for k2C. The successful synthesis of a k2U phosphoramidite and its use for RNA synthesis now paves the way for the preparation of a k2C phosphoramidite and RNA strands containing k2C.
Dokumententyp: | Zeitschriftenartikel |
---|---|
EU Funded Grant Agreement Number: | 741912 |
EU-Projekte: | Horizon 2020 > ERC Grants > ERC Advanced Grant > ERC Grant 741912: EPiR - The Chemical Basis of RNA Epigenetics |
Publikationsform: | Publisher's Version |
Keywords: | lysidine; modified RNA bases; RNA; nucleosides; origin of life; prebiotic chemistry |
Fakultät: | Chemie und Pharmazie > Department Chemie |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 540 Chemie |
URN: | urn:nbn:de:bvb:19-epub-72517-6 |
ISSN: | 1522-2675 |
Sprache: | Englisch |
Dokumenten ID: | 72517 |
Datum der Veröffentlichung auf Open Access LMU: | 17. Jun. 2020, 08:16 |
Letzte Änderungen: | 04. Nov. 2020, 13:53 |
Literaturliste: | [1] M. A. Machinska, K. Milanowska. O. O. Oglou, E. Purta, M. Kurkowska, A. Olchowik, W. Januszewski, S. Kalinowski, S. Dunin-Howkawicz, K. M. Rother, M. Helm, J. M. Bujnicki, H. Grosjean, ‘MODOMICS: a database of RNA modification pathways-2013 update’, Nucleic Acids, Res. 2013, 41, D262-D267. [2] M. T. Watts, I. Tinoco, ‘Role of hypermodified bases in transfer RNA. Solution properties of dinucleoside monophosphates’, Biochemistry 1978, 17, 2455-2463. [3] H. Grosjean, E. Westhof, ‘An integrated, structure- and energy-based view of the genetic code’, Nucleic Acids Res. 2016, 44, 8020-8040. [4] C. Schneider, S. Becker, H. Okamura, A. Crisp, T. Amatov, M. Stadlmeier, T. Carell, ‘Noncanonical RNA nucleosides as molecular fossils of an early Earth-generation by prebiotic methylations and carbamoylations’, Angew. Chem., Int. Ed. 2018, 57, 5943-5946. [5] M. Di Giulio, ‘Reflections on the origin of the genetic code: A hypothesis’, J. Theor. Biol. 1998, 191, 191-196. [6] H. Grosjean, V. de Crecy-Lagard, G. R. Björk, ‘Aminoacylation of the anticodon stem by a tRNA-synthetase paralog: relic of an ancient code?’, Trends Biochem. Sci. 2004, 29, 519-522. [7] E. Szathmary, ‘The origin of the genetic code: amino acids as cofactors in an RNA world’, Trends Genet. 1999, 15, 223-229. [8] T. R. Cech, A. J. Zaug, P. J. Grabowski, ‘In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence’, Cell 1981, 27, 487-496. [9] C. Guerrier-Takada, K. Gardiner, T. Marsh, N. Pace, S. Altman, ‘The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme’, Cell 1983, 35, 849-857. [10] T. Muamatsu, S. Yokoyama, N. Horie, A. Matsuda, T. Ueda, Z. Yamaizumi, Y. Kuchino, S. Nishimura, T. Miyazawa, ‘A novel lysine-substituted nucleoside in the first position of the anticodon of minor isoleucine tRNA from Escherichia coli’, J. Biol. Chem. 1988, 263, 9261-9267. [11] B. J. Kopina, C. T. Lauhon, ‘Efficient preparation of 2,4-diaminopyrimidine nucleosides: total synthesis of lysidine and agmatidine’, Org. Lett. 2012, 14, 4118-4121. [12] D. Mandal, C. Kohrer, D. Su, S. P. Russell, K. Krivos, C. M. Castleberry, P. Blum, P. A. Limbach, D. Soll, U. L. Raj Bhandary, ‘Agmatidine, a modified cytidine in the anticodon of archaeal tRNAIle, base pairs with adenosine but not with guanosine’, Proc. Natl. Acad. Sci. U.S.A., 2010, 107, 2872-2877 [13] Y. Ikeuchi, S. Kimura, T. Numata, D. Nakamura, T. Yokogawa, T. Ogata, T. Wada, T. Suzuki, T. Suzuki, ‘Agmatine-conjugated cytidine in a tRNA anticodon is essential for AUA decoding in archaea’, Nat. Chem. Biol. 2010, 6, 277-282. [14] S. V. Melnikov, N. F. Khabibullina, E. Mairhofer, O. V.-Rodrigues, N. M. Reynolds, R. Micura, D. Soell, Y. S. Polikanov, ‘Mechanistic insights into the slow peptide bond formation with D-amino acids in the ribosomal active site’, Nucleic Acids Res. 2019, 47, 2089-2100. [15] S. Sothiselvam, S. Neuner, L. Rigger, D. Klepacki, R. Micura, N. V.-Laslop, A. S. Mankin, ‘Binding of macrolide antibiotics leads to ribosomal selection against specific substrates based on their charge and size’, Cell Rep. 2016, 16, 1789-1799. [16] R. Shapiro, ‘Prebiotic cytosine synthesis: A critical analysis and implications for the origin of life’, Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 4396-4401. [17] H. Loennberg, R. Kaeppi, ‘Competition between the hydrolysis and deamination of cytidine and its 5-substituted derivatives in aqueous acid’, Nucleic Acids Res. 1985, 13, 2451-2456. [18] R. M. Voorhees, D. Mandal, C. Neubauer, C. Köhrer, U. L. RajBhandary, V. Ramakrishnan, ‘The structural basis for specific decoding of AUA by isoleucine tRNA on the ribosome’, Nat. Struct. Mol. Biol. 2013, 20, 641-643. [19] A. Soma, Y. Ikeuchi, S. Kanemasa, K. Kobayachi, N. Ogasawara, T. Ote, J. Kato, K. Watanabe, Y. Sekine, T. Suzuki, ‘An RNA-modifying enzyme that governs both the codon and amino acid specificities of isoleucine tRNA’, Mol. Cell 2003, 12, 689-698. [20] Y. Ikeuchi, A. Soma, T. Ote, J. Kato, Y. Sekine, T. Suzuki, ‘Molecular mechanism of lysidine synthesis that determines tRNA identity and codon recognition’, Mol. Cell 2005, 19, 235-246. [21] T. Muramatsu, S. Yokoyama, N. Horie, A. Matsuda, T. Ueda, Z. Yamaizumi, Y. Kuchino, S. Nishimura, T. Miyazawa, ‘Novel lysine-substituted nucleoside in the first position of the anticodon of minor isoleucine tRNA from Escherichia coli’, J. Biol. Chem. 1988, 263, 9261-9267. [22] C. Switzer, S. E. Moroney, S. A. Benner, ‘Enzymatic incorporation of a new base pair into DNA and RNA’, J. Am. Chem. Soc. 1989, 111, 8322-8323. [23] J. A. Piccirilli, T. Krauch, S. E. Moroney, S. A. Benner, ‘Enzymatic incorporation of a new base into DNA and RNA extends the genetic alphabet’, Nature 1990, 343, 33-37. [24] T. Suzuki, K. Miyauchi, ‘Discovery and characterization of tRNAIle lysidine synthetase (TilS)’, FEBS Letters 2010, 584, 272-277. [25] T. Muramatsu, K. Nishikawa, F. Nemoto, Y. Kuchino, S. Nishimura, T. Miyazawa, S. Yokoyama, ‘Codon and amino-acid specificities of a transfer RNA are both converted by a single post-transcriptional modification’, Nature 1988, 336, 179-181. [26] J. Kimura, K. Yagi, H. Suzuki, O. Mitsunobu, ‘Studies on nucleosides and nucleotides. VIII. Preparation and reactions of triphenylphosphoranediylnucleosides’, Bull. Chem. Soc. Jpn. 1980, 53, 3670-3677. [27] P. T. Gilham, H. G. Khorana, ‘Studies on polynucleotides. A new and general method for the chemical synthesis of the C5’-C3’ internucleotidic linkage. Synthesis of deoxyribo-dinucleotides’, J. Am. Chem. Soc. 1958, 80, 6212-6222. [28] M. Smith, D. H. Rammler, I. H. Goldberg, H. G. Khorana, ‘Studies on polynucleotides. XIV. Specific synthesis of the C3’-C5’ interribonucleotide linkage. Syntheses of uridylyl-(3’5’)-uridine and uridylyl-(3’5’)-adenosine’, J. Am. Chem. Soc. 1962, 84, 430-440. [29] K. K. Ogilvie, A. L. Schifman, C. L. Penney, ‘Synthesis of oligoribonucleotides. III. The use of silyl protecting groups in nucleoside and nucleotide chemistry. VIII’, Can. J. Chem. 1979, 57, 2230-2238. [30] N. Usman, K. K. Ogilvie, M.-Y. Jiang, R. J. Cedergren, ‘Automated chemical synthesis of long oligoribonucleotides using 2’-O-silylated ribonucleoside 3’-O-phosphoramidites on a controlled-pore glass support: synthesis of a 43-nucleotide sequence similar to the 3’-half molecule of an Escherichia coli formylmethionine tRNA’, J. Am. Chem. Soc. 1987, 109, 7845-7854. [31] R. Kierzek, M. H. Caruthers, C. E. Longfellow, D. Swinton, D. H. Turner, S. M. Freier, ‘Polymer-supported RNA synthesis and its application to test the nearest-neighbor model for duplex stability’, Biochemistry 1986, 25, 7840-7846. [32] I. Hirao, M. Ishikawa, K. Miura, ‘Solid-phase synthesis of oligoribonucleotides’, Nucleic Acids Res. Symp. Ser. 1985, 16, 173-176. [33] H. Tanimura, T. Fukazawa, M. Sekine, T. Hata, J. W. Efcavitch, G. Zon, ‘The practical synthesis of RNA fragments in the solid phase approach’, Tetrahedron Lett. 1988, 29, 577-578. [34] H. Tanimura, M. Sekine, T. Hata, ‘Chemical synthesis of RNA fragments related to the C4N hypothesis’, Nucleosides and nucleotides 1986, 5, 363-383. [35] F. Ferreira, F. Morvan, ‘Silyl protecting groups for oligonucleotide synthesis removed by a ZnBr2 treatment’, Nucleosides, Nucleotides and Nucleic acids 2005, 24, 1009-1013. [36] A. A.-H. A.-Rahman, E. B. Pedersen, C. Nielsen, ‘Synthesis of 5-methylisocytidine derivatives’, Monatsh. Chem. 1996, 127, 455-459. [37] R. E. Schute, D. H. Rich, ‘Synthesis and evaluation of novel activated mixed carbonate reagents for the introduction of the 2-(trimethylsilyl)ethoxycarbonyl(Teoc)-protecting group’, Synthesis 1987, 4, 346-349. |