Abstract
OBJECTIVES To evaluate the influence of intraoral scanning on the quality of preparations for all-ceramic single crowns. MATERIAL AND METHODS A total of 690 randomly selected and anonymized in vivo single crown preparations were examined. Three hundred twenty-three preparations were directly recorded with an intraoral scanner (group IS). Data from plaster casts digitized by a laboratory scanner (group ID; N = 367) served as control. Comparisons included convergence angle, marginal design, marginal substance reduction, homogeneity of the finish line, and undercuts. Evaluation was performed using fully automated specialized software. Data were analyzed applying Kolmogorov-Smirnov, Mann-Whitney U test, and Fisher's exact test. Level of significance was set at p < 0.05. RESULTS Convergence angle was above optimum in both groups, but significantly larger for group IS (p < 0.001). Marginal design was more ideal in group IS concerning the absence of featheredge design (p < 0.001) and reverse bevel (p = 0.211). Marginal substance reduction was closer to prerequisites for all-ceramic restorations in group IS (p < 0.001). Finish lines were more homogeneous in group IS regarding the uniformity of their course (p < 0.001). Undercuts were more frequently found in group ID than in group IS (p < 0.001). CONCLUSIONS Intraoral scanning of prepared teeth has positive impact on the quality of preparations for all-ceramic single crowns regarding marginal substance reduction, marginal design, homogeneity of the finish line, and undercuts. CLINICAL RELEVANCE Accurate preparation design represents a fundamental condition for success of ceramic crowns. Since there is potential for optimization, intraoral scanning might enhance preparation quality providing instant visual feedback.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Medizin |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
URN: | urn:nbn:de:bvb:19-epub-73153-0 |
Sprache: | Englisch |
Dokumenten ID: | 73153 |
Datum der Veröffentlichung auf Open Access LMU: | 24. Sep. 2020, 06:55 |
Letzte Änderungen: | 26. Mai 2021, 14:13 |