Abstract
Epigenetic plasticity underpins cell potency, but the extent to which active turnover of DNA methylation contributes to such plasticity is not known and the underlying pathways are poorly understood. Here we use metabolic labelling with stable isotopes and mass spectrometry to quantitatively address the global turnover of genomic methylcytidine (mdC), hydroxymethylcytidine (hmdC) and formylcytidine (fdC) across mouse pluripotent cell states. High rates of mdC/hmdC oxidation and fdC turnover characterize a formative-like pluripotent state. In primed pluripotent cells the global mdC turnover rate is about 3-6% faster than can be explained by passive dilution through DNA synthesis. While this active component is largely dependent on Tet-mediated mdC oxidation, we unveil additional oxidation-independent mdC turnover, possibly through DNA repair. This process accelerates upon acquisition of primed pluripotency and returns to low levels in lineage committed cells. Thus, in pluripotent cells active mdC turnover involves both mdC oxidation-dependent and independent processes.
Dokumententyp: | Zeitschriftenartikel |
---|---|
EU Funded Grant Agreement Number: | 741912 |
EU-Projekte: | Horizon 2020 > ERC Grants > ERC Advanced Grant > ERC Grant 741912: EPiR - The Chemical Basis of RNA Epigenetics |
Publikationsform: | Postprint |
Fakultät: | Chemie und Pharmazie > Department Chemie |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 540 Chemie
500 Naturwissenschaften und Mathematik > 570 Biowissenschaften; Biologie |
URN: | urn:nbn:de:bvb:19-epub-73242-4 |
Sprache: | Englisch |
Dokumenten ID: | 73242 |
Datum der Veröffentlichung auf Open Access LMU: | 24. Aug. 2020, 08:37 |
Letzte Änderungen: | 18. Mai 2021, 12:42 |
Literaturliste: | 1. Greenberg, M. V. C. & Bourc’his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol 1–18 (2019) doi:10.1038/s41580-019-0159-6. 2. He, Y. & Ecker, J. R. Non-CG Methylation in the Human Genome. Annual Review of Genomics and Human Genetics 16, 55–77 (2015). 3. Tahiliani, M. et al. Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1. Science 324, 930–935 (2009). 4. Ito, S. et al. Tet Proteins Can Convert 5-Methylcytosine to 5-Formylcytosine and 5-Carboxylcytosine. Science 333, 1300–1303 (2011). 5. He, Y.-F. et al. Tet-Mediated Formation of 5-Carboxylcytosine and Its Excision by TDG in Mammalian DNA. Science 333, 1303–1307 (2011). 6. Schuermann, D., Weber, A. R. & Schär, P. Active DNA demethylation by DNA repair: Facts and uncertainties. DNA Repair 44, 92–102 (2016). 7. Maiti, A. & Drohat, A. C. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: Potential implications for active demethylation of CpG sites. Journal of Biological Chemistry 286, 35334 (2011). 8. Slyvka, A., Mierzejewska, K. & Bochtler, M. Nei-like 1 (NEIL1) excises 5-carboxylcytosine directly and stimulates TDG-mediated 5-formyl and 5-carboxylcytosine excision. Scientific Reports 7, 9001 (2017). 9. Schomacher, L. et al. Neil DNA glycosylases promote substrate turnover by Tdg during DNA demethylation. Nature Structural & Molecular Biology 23, 116–124 (2016). 10. Chen, C.-C., Wang, K.-Y. & Shen, C.-K. J. The Mammalian de novo DNA Methyltransferases Dnmt3a and Dnmt3b Are Also DNA 5-Hydroxymethyl Cytosine Dehydroxymethylases. J. Biol. Chem. 287, 33116–33121 (2012). 11. Liutkevičiūtė, Z., Lukinavičius, G., Masevičius, V., Daujotytė, D. & Klimašauskas, S. Cytosine-5-methyltransferases add aldehydes to DNA. Nature Chemical Biology 5, 400–402 (2009). 12. Iwan, K. et al. 5-Formylcytosine to cytosine conversion by C–C bond cleavage in vivo. Nature Chemical Biology 14, 72–78 (2017). 13. Liutkevičiu̅tė, Z. et al. Direct Decarboxylation of 5-Carboxylcytosine by DNA C5- Methyltransferases. J. Am. Chem. Soc. 136, 5884–5887 (2014). 14. Schiesser, S. et al. Mechanism and Stem‐Cell Activity of 5‐Carboxycytosine Decarboxylation Determined by Isotope Tracing. Angewandte Chemie International Edition 51, 6516–6520 (2012). 15. Rai, K. et al. DNA Demethylation in Zebrafish Involves the Coupling of a Deaminase, a Glycosylase, and Gadd45. Cell 135, 1201–1212 (2008). 16. Cortellino, S. et al. Thymine DNA Glycosylase Is Essential for Active DNA Demethylation by Linked Deamination-Base Excision Repair. Cell 146, 67–79 (2011). 17. Santos, F. et al. Active demethylation in mouse zygotes involves cytosine deamination and base excision repair. Epigenetics & Chromatin 6, 39 (2013). 18. Metivier, R. et al. Cyclical DNA methylation of a transcriptionally active promoter. Nature 452, 45–50 (2008). 19. Grin, I. & Ishchenko, A. A. An interplay of the base excision repair and mismatch repair pathways in active DNA demethylation. Nucl. Acids Res. 44, 3713–3727 (2016). 20. Franchini, D.-M. et al. Processive DNA Demethylation via DNA Deaminase-Induced Lesion Resolution. PLoS ONE 9, e97754 (2014). 21. Atlasi, Y. & Stunnenberg, H. G. The interplay of epigenetic marks during stem cell differentiation and development. Nature Reviews Genetics 18, 643–658 (2017). 22. von Meyenn, F. et al. Impairment of DNA Methylation Maintenance Is the Main Cause of Global Demethylation in Naive Embryonic Stem Cells. Molecular Cell 62, 848–861 (2016). 23. Toyooka, Y., Shimosato, D., Murakami, K., Takahashi, K. & Niwa, H. Identification and characterization of subpopulations in undifferentiated ES cell culture. Development 135, 909–918 (2008). 24. Kim, H. et al. Modulation of β-catenin function maintains mouse epiblast stem cell and human embryonic stem cell self-renewal. Nat Commun 4, 2403 (2013). 25. Pfaffeneder, T. et al. Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nat Chem Biol 10, 574–581 (2014). 26. Shirane, K. et al. Global Landscape and Regulatory Principles of DNA Methylation Reprogramming for Germ Cell Specification by Mouse Pluripotent Stem Cells. Developmental Cell 39, 87–103 (2016). 27. Blaschke, K. et al. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 500, 222–226 (2013). 28. van Mierlo, G., Wester, R. A. & Marks, H. A mass spectrometry survey of chromatin-associated proteins in pluripotency and early lineage commitment. Proteomics 19, e1900047 (2019). 29. Yagi, M. et al. Derivation of ground-state female ES cells maintaining gamete-derived DNA methylation. Nature 548, 224–227 (2017). 30. Choi, J. et al. Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells. Nature 548, 219–223 (2017). 31. Kalkan, T. et al. Tracking the embryonic stem cell transition from ground state pluripotency. Development 144, 1221–1234 (2017). 32. Wang, L. et al. Programming and Inheritance of Parental DNA Methylomes in Mammals. Cell 157, 979–991 (2014). 33. Lu, F., Liu, Y., Jiang, L., Yamaguchi, S. & Zhang, Y. Role of Tet proteins in enhancer activity and telomere elongation. Genes Dev. 28, 2103–2119 (2014). 34. Tsumura, A. et al. Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Genes Cells 11, 805–14 (2006). 35. Jekunen, A., Puukka, M. & Vilpo, J. Exclusion of exogenous 5-methyl-2’-deoxycytidine from DNA in human leukemic cells: A study with [2-14C]- and [methyl-14C]5-methyl-2’-deoxycytidine. Biochemical Pharmacology 32, 1165–1168 (1983). 36. Maley, G. F., Lobo, A. P. & Maley, F. Properties of an affinity-column-purified human deoxycytidylate deaminase. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1162, 161–170 (1993). 37. de Saint Vincent, B. R., Déchamps, M. & Buttin, G. The modulation of the thymidine triphosphate pool of Chinese hamster cells by dCMP deaminase and UDP reductase. Thymidine auxotrophy induced by CTP in dCMP deaminase-deficient lines. J. Biol. Chem. 255, 162–167 (1980). 38. Bachman, M. et al. 5-Formylcytosine can be a stable DNA modification in mammals. Nat Chem Biol 11, 555–557 (2015). 39. Bilyard, M. K., Becker, S. & Balasubramanian, S. Natural, modified DNA bases. Current Opinion in Chemical Biology 57, 1–7 (2020). 40. Shen, J.-C., Rideout, W. M. & Jones, P. A. The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA. Nucl. Acids Res. 22, 972–976 (1994). 41. Ladstätter, S. & Tachibana-Konwalski, K. A Surveillance Mechanism Ensures Repair of DNA Lesions during Zygotic Reprogramming. Cell 167, 1774-1787.e13 (2016). 42. Jiang, D., Wei, S., Chen, F., Zhang, Y. & Li, J. TET3‐mediated DNA oxidation promotes ATR‐dependent DNA damage response. EMBO reports 18, 781–796 (2017). 43. Kweon, S.-M. et al. Erasure of Tet-Oxidized 5-Methylcytosine by a SRAP Nuclease. Cell Reports 21, 482–494 (2017). 44. Robertson, A. B., Robertson, J., Fusser, M. & Klungland, A. Endonuclease G preferentially cleaves 5-hydroxymethylcytosine-modified DNA creating a substrate for recombination. Nucl. Acids Res. 42, 13280–13293 (2014). 45. Liu, N. et al. Intrinsic and Extrinsic Connections of Tet3 Dioxygenase with CXXC Zinc Finger Modules. PLoS ONE 8, e62755 (2013). 46. Shipony, Z. et al. Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells. Nature 513, 115–119 (2014). 47. Ooi, S. K. et al. Dynamic instability of genomic methylation patterns in pluripotent stem cells. Epigenetics & Chromatin 3, 17 (2010). 48. Chen, T., Ueda, Y., Dodge, J. E., Wang, Z. & Li, E. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol Cell Biol 23, 5594–605 (2003). 49. Bachman, M. et al. 5-Hydroxymethylcytosine is a predominantly stable DNA modification. Nat Chem 6, 1049–1055 (2014). 50. Rulands, S. et al. Genome-Scale Oscillations in DNA Methylation during Exit from Pluripotency. Cell Systems 7, 63-76.e12 (2018). |