Abstract
PURPOSE Computed tomography angiography (CTA) is routinely used to detect large-vessel occlusion (LVO) in patients with suspected acute ischemic stroke; however, visual analysis is time consuming and prone to error. To evaluate solutions to support imaging triage, we tested performance of automated analysis of CTA source images (CTASI) at identifying patients with LVO. METHODS Stroke patients with LVO were selected from a prospectively acquired cohort. A control group was selected from consecutive patients with clinically suspected stroke without signs of ischemia on CT perfusion (CTP) or infarct on follow-up. Software-based automated segmentation and Hounsfield unit (HU) measurements were performed on CTASI for all regions of the Alberta Stroke Program Early CT score (ASPECTS). We derived different parameters from raw measurements and analyzed their performance to identify patients with LVO using receiver operating characteristic curve analysis. RESULTS The retrospective analysis included 145 patients, 79 patients with LVO stroke and 66 patients without stroke. The parameters hemispheric asymmetry ratio (AR), ratio between highest and lowest regional AR and M2-territory AR produced area under the curve (AUC) values from 0.95-0.97 (all p < 0.001) for detecting presence of LVO in the total population. Resulting sensitivity (sens)/specificity (spec) defined by the Youden index were 0.87/0.97-0.99. Maximum sens/spec defined by the specificity threshold ≥0.70 were 0.91-0.96/0.77-0.83. Performance in a~small number of patients with isolated M2 occlusion was lower (AUC: 0.72-0.85). CONCLUSION Automated attenuation measurements on CTASI identify proximal LVO stroke patients with high sensitivity and specificity. This technique can aid in accurate and timely patient selection for thrombectomy, especially in primary stroke centers without CTP capacity.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Publikationsform: | Publisher's Version |
Fakultät: | Medizin |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
URN: | urn:nbn:de:bvb:19-epub-73470-0 |
Sprache: | Englisch |
Dokumenten ID: | 73470 |
Datum der Veröffentlichung auf Open Access LMU: | 25. Sep. 2020, 13:37 |
Letzte Änderungen: | 04. Nov. 2020, 13:53 |