Dies ist die neueste Version des Dokumentes.
Abstract
Background: Precision small animal radiotherapy research is a young emerging field aiming to provide new experimental insights into tumor and normal tissue models in different microenvironments, to unravel complex mechanisms of radiation damage in target and non-target tissues and assess efficacy of novel therapeutic strategies. For photon therapy, modern small animal radiotherapy research platforms have been developed over the last years and are meanwhile commercially available. Conversely, for proton therapy, which holds potential for an even superior outcome than photon therapy, no commercial system exists yet. Material and methods: The project SIRMIO (Small Animal Proton Irradiator for Research in Molecular Image-guided Radiation-Oncology) aims at realizing and demonstrating an innovative portable prototype system for precision image-guided small animal proton irradiation, suitable for installation at existing clinical treatment facilities. The proposed design combines precise dose application with in-situ multi-modal anatomical image guidance and in-vivo verification of the actual treatment delivery. Results and conclusions: This manuscript describes the status of the different components under development, featuring a dedicated beamline for degradation and focusing of clinical proton beams, along with novel detector systems for in-situ imaging and range verification. The foreseen workflow includes pre-treatment proton transmission imaging, complemented by ultrasonic tumor localization, for treatment planning and position verification, followed by image-guided delivery with on-site range verification by means of ionoacoustics (for pulsed beams) and positron-emission-tomography (PET, for continuous beams). The proposed compact and cost-effective system promises to open a new era in small animal proton therapy research, contributing to the basic understanding of in-vivo radiation action to identify areas of potential breakthroughs for future translation into innovative clinical strategies.
Dokumententyp: | Zeitschriftenartikel |
---|---|
EU Funded Grant Agreement Number: | 725539 |
EU-Projekte: | Horizon 2020 > ERC Grants > ERC Consolidator Grant > ERC Grant 725539: SIRMIO - Small Animal Ion Irradiator for Research in Molecular Image-Guided Radio-Oncology |
Publikationsform: | Postprint |
Keywords: | small animal irradiation; proton therapy; image guidance |
Fakultät: | Physik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 570 Biowissenschaften; Biologie |
URN: | urn:nbn:de:bvb:19-epub-74147-2 |
Sprache: | Englisch |
Dokumenten ID: | 74147 |
Datum der Veröffentlichung auf Open Access LMU: | 10. Nov. 2020, 10:39 |
Letzte Änderungen: | 10. Nov. 2020, 10:39 |
Literaturliste: | [1] Baumann M, Krause M, Overgaard J, et al. Radiation oncology in the era of precision medicine. Nat Rev Cancer. 2016;16:234-49. [2] Durante M. New challenges in high-energy particle radiobiology. Br J Rad. 2014;87:20130626. [3] Verhaegen F, Granton P, Tryggestad E. Small animal radiotherapy research platforms. Phys Med Biol. 2011;56:R55-R83. [4] Parodi K, Mairani A, Brons S, et al. Monte Carlo simulations to support start-up and treatment planning of scanned proton and carbon ion therapy at a synchrotron-based facility. Phys Med Biol. 2012;57:3759-84. [5] Mirandola A, Molinelli S, Vilches Freixas G, et al. Dosimetric commissioning and quality assurance of scanned ion beams at the Italian National Centre for Oncological Hadrontherapy. Med Phys. 2015;42:5287 [6] Ford E, Emery R, Huff D, et al. An image-guided precision proton radiation platform for preclinical in vivo research. Phys Med Biol. 2017;62:43-58. [7] Agostinelli S, Allison J, Amako KA, et al. Geant4 – a simulation toolkit. Nucl Instrum Methods Phys Res, Sect A. 2003;506:250–303. [8] Borland M. ELEGANT: A Flexible SDDS-Compliant Code for Accelerator Simulation [Technical Report]. United States: Argonne National Lab; 2000. (LS-287). [9] Würl M, Englbrecht F, Parodi K, et al. Dosimetric impact of the low-dose envelope of scanned proton beams at a ProBeam facility: comparison of measurements with TPS and MC calculations. Phys Med Biol. 2016;61:958. [10] Telsemeyer J, Jäkel O, Martisikova M. Quantitative carbon ion beam radiography and tomography with a flat-panel detector. Phys Med Biol. 2012;57:7957e71. [11] Ferrari A, Sala PR, Fassó A, et al. FLUKA: a multi-particle transport code. 2005. (CERN-2005-10, INFN/TC_05/11, SLAC-R-773). [12] Böhlen T, Cerutti F, Chin M, et al. The FLUKA code: developments and challenges for high energy and medical applications. Nucl Data Sheets. 2014;120:211–214. [13] Assmann W, Kellnberger S, Reinhardt S, et al. Ionoacoustic characterization of the proton Bragg peak with submillimeter accuracy. Med Phys. 2015;42:567. [14] Parodi K. Vision 20/20: Positron emission tomography in radiation therapy planning, delivery, and monitoring. Med Phys. 2015;42:7153. [15] Kurichiyanil N, Pinto M, Rösch T, et al. Design of an adaptable permanent-magnet quadrupole triplet for refocusing of energy degraded proton beams for small animal irradiation [accepted for poster presentation, to appear in Med Phys]. AAPM Annual Meeting; 2019 Jul 14-18; San Antonio TX, USA. [16] Würl M, Moskal I, Carriço M, et al. Feasibility study for small-animal proton radiography using passive energy variation and a single planar detector. 49. Jahrestagung der DGMP; 2018 Sep 19-22, Nürnberg, Germany. Abstractband p.244. [17] Meyer S, Bortfeldt J, Lämmer P, et al. Optimisation and Performance Evaluation of a Proton Computed Tomography System for Small Animal Imaging [accepted for oral presentation, to appear in IJPT], PTCOG 58th Annual Conference, 2019 Jun 10-15, Manchester, UK. [18] Bortfeldt J, Lämmer P, Meyer S, et al. Development of a Time Projection Chamber for Ion Transmission Imaging. 15th Vienna Conference on Instrumentation; 2019 Feb 18-22, Vienna, AT. [19] Lascaud J, Lehrack S, Wieser HP, et al. Applicability of Capacitive Micromachined Ultrasonic Transducers for the detection of proton-induced thermoacoustic waves. Submitted to IEEE IUS 2019. [20] Lovatti G, Nitta M, Safari M, et al. Design study of a novel geometrical arrangement for an in-beam small animal PET scanner. Submitted to IEEE NSS/MIC 2019. [21] Nishikido F, Inadama N, Yoshida E, et al. Four-layer DOI PET detectors using a multi-pixel photon counter array and the light sharing method. Nucl Instrum Methods Phys Res A. 2013;729:755–761. |
Alle Versionen dieses Dokumentes
-
Towards a novel small animal proton irradiation platform: the SIRMIO project. (deposited 24. Feb. 2020, 14:35)
- Towards a novel small animal proton irradiation platform: the SIRMIO project. (deposited 10. Nov. 2020, 10:39) [momentan angezeigt]