Abstract
A deeper understanding of biological mechanisms to promote more efficient treatment strategies in proton therapy demands advances in preclinical radiation research. However this is often limited by insufficient availability of adequate infrastructures for precision image guided small animal proton irradiation. The project SIRMIO aims at filling this gap by developing a portable image-guided research platform for small animal irradiation, to be used at clinical facilities and allowing for a precision similar to a clinical treatment, when scaled down to the small animal size. This work investigates the achievable dosimetric properties of different lowest energy clinical proton therapy beams, manipulated by a dedicated portable beamline including active focusing after initial beam energy degradation and collimation. By measuring the lateral beam size in air close to the beam nozzle exit and the laterally integrated depth dose in water, an analytical beam model based on the beam parameters of the clinical beam at the Rinecker Proton Therapy Center was created for the lowest available clinical beam energy. The same approach was then applied to estimate the lowest energy beam model of different proton therapy facilities, Paul Scherrer Institute, Centre Antoine Lacassagne, Trento Proton Therapy Centre and the Danish Centre for Particle Therapy, based on their available beam commissioning data. This comparison indicated similar beam properties for all investigated sites, with emittance values of a few tens of mm·mrad. Finally, starting from these beam models, we simulated propagation through a novel beamline designed to manipulate the beam energy and size for precise small animal irradiation, and evaluated the resulting dosimetric properties in water. For all investigated initial clinical beams, similar dosimetric results suitable for small animal irradiation were found. This work supports the feasibility of the proposed SIRMIO beamline, promising suitable beam characteristics to allow for precise preclinical irradiation at clinical treatment facilities.
Dokumententyp: | Zeitschriftenartikel |
---|---|
EU Funded Grant Agreement Number: | 725539 |
EU-Projekte: | Horizon 2020 > ERC Grants > ERC Consolidator Grant > ERC Grant 725539: SIRMIO - Small Animal Ion Irradiator for Research in Molecular Image-Guided Radio-Oncology |
Publikationsform: | Submitted Version |
Fakultät: | Physik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 570 Biowissenschaften; Biologie |
URN: | urn:nbn:de:bvb:19-epub-74194-7 |
Sprache: | Englisch |
Dokumenten ID: | 74194 |
Datum der Veröffentlichung auf Open Access LMU: | 16. Nov. 2020, 12:59 |
Letzte Änderungen: | 16. Nov. 2020, 12:59 |
Literaturliste: | Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., Behner, F., Bellagamba, L., Boudreau, J., Broglia, L., Brunengo, A., Burkhardt, H., Chauvie, S., Chuma, J., Chytracek, R., Cooperman, G., Cosmo, G., Degtyarenko, P., Dell’Acqua, A., Depaola, G., Dietrich, D., Enami, R., Feliciello, A., Ferguson, C., Fesefeldt, H., Folger, G., Foppiano, F., Forti, A., Garelli, S., Giani, S., Giannitrapani, R., Gibin, D., Gómez Cadenas, J., González, I., Gracia Abril, G., Greeniaus, G., Greiner, W., Grichine, V., Grossheim, A., Guatelli, S., Gumplinger, P., Hamatsu, R., Hashimoto, K., Hasui, H., Heikkinen, A., Howard, A., Ivanchenko, V., Johnson, A., Jones, F., Kallenbach, J., Kanaya, N., Kawabata, M., Kawabata, Y., Kawaguti, M., Kelner, S., Kent, P., Kimura, A., Kodama, T., Kokoulin, R., Kossov, M., Kurashige, H., Lamanna, E., Lampén, T., Lara, V., Lefebure, V., Lei, F., Liendl, M., Lockman, W., Longo, F., Magni, S., Maire, M., Medernach, E., Minamimoto, K., Mora de Freitas, P., Morita, Y., Murakami, K., Nagamatu, M., Nartallo, R., Nieminen, P., Nishimura, T., Ohtsubo, K., Okamura, M., O’Neale, S., Oohata, Y., Paech, K., Perl, J., Pfeiffer, A., Pia, M., Ranjard, F., Rybin, A., Sadilov, S., Di Salvo, E., Santin, G., Sasaki, T., Savvas, N., Sawada, Y., Scherer, S., Sei, S., Sirotenko, V., Smith, D., Starkov, N., Stoecker, H., Sulkimo, J., Takahata, M., Tanaka, S., Tcherniaev, E., Safai Tehrani, E., Tropeano, M., Truscott, P., Uno, H., Urban, L., Urban, P., Verderi, M., Walkden, A., Wander, W., Weber, H., Wellisch, J., Wenaus, T., Williams, D., Wright, D., Yamada, T., Yoshida, H. & Zschiesche, D. (2003). Geant4—a simulation toolkit, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506(3): 250–303. Berger, M. J., Inokuti, M., Anderson, H. H., Bichsel, H., Dennis, J. A., Powers, D., Seltzer, S. M. & Turner, J. E. (1984). Report 37, Journal of the International Commission on Radiation Units and Measurements os19(2): NP–NP. Beyreuther, E., Baumann, M., Enghardt, W., Helmbrecht, S., Karsch, L., Krause, M., Pawelke, J., Schreiner, L., Schürer, M., von Neubeck, C. & Lühr, A. (2018). Research Facility for Radiobiological Studies at the University Proton Therapy Dresden, International Journal of Particle Therapy 5(1): 172–182. Bijl, H. P., van Luijk, P., Coppes, R. P., Schippers, J. M., Konings, A. W. & van der Kogel, A. J. (2002). Dose-volume effects in the rat cervical spinal cord after proton irradiation, International Journal of Radiation Oncology*Biology*Physics 52(1): 205–211. Bortfeld, T. (1997). An analytical approximation of the Bragg curve for therapeutic proton beams, Medical Physics 24(12): 2024–2033. Buonanno, M., Grilj, V. & Brenner, D. J. (2019). Biological effects in normal cells exposed to FLASH dose rate protons, Radiotherapy and Oncology 139: 51–55. Carey, D. C. (1987). The Optics of Charged Particle Beams, Vol. 6, Harwood Academic Pub. Durante, M. (2014). New challenges in high-energy particle radiobiology, The British Journal of Radiology 87(1035): 20130626. Ford, E., Emery, R., Huff, D., Narayanan, M., Schwartz, J., Cao, N., Meyer, J., Rengan, R., Zeng, J., Sandison, G., Laramore, G. & Mayr, N. (2017). An image-guided precision proton radiation32 platform for preclinical in vivo research, Physics in Medicine and Biology 62(1): 43–58. Grassberger, C., Lomax, A. & Paganetti, H. (2015). Characterizing a proton beam scanning system for Monte Carlo dose calculation in patients, Physics in Medicine and Biology 60(2): 633– 645. Greubel, C., Assmann, W., Burgdorf, C., Dollinger, G., Du, G., Hable, V., Hapfelmeier, A., Hertenberger, R., Kneschaurek, P., Michalski, D., Molls, M., Reinhardt, S., Röper, B., Schell, S., Schmid, T. E., Siebenwirth, C., Wenzl, T., Zlobinskaya, O. & Wilkens, J. J. (2011). Scanning irradiation device for mice in vivo with pulsed and continuous proton beams, Radiation and Environmental Biophysics 50(3): 339–344. Highland, V. L. (1975). Some practical remarks on multiple scattering, Nuclear Instruments and Methods 129(2): 497–499. Hinterberger, F. (2008). Physik der Teilchenbeschleuniger und Ionenoptik, second edn, Springer Berlin Heidelberg. Hong, L., Goitein, M., Bucciolini, M., Comiskey, R., Gottschalk, B., Rosenthal, S., Serago, C. & Urie, M. (1996). A pencil beam algorithm for proton dose calculations, Physics in Medicine and Biology 41(8): 1305–1330. Kim, M. M., Irmen, P., Shoniyozov, K., Verginadis, I. I., Cengel, K. A., Koumenis, C., Metz, J. M., Dong, L. & Diffenderfer, E. S. (2019). Design and commissioning of an image-guided small animal radiation platform and quality assurance protocol for integrated proton and x-ray radiobiology research, Physics in Medicine & Biology 64(13): 135013. Kleeven, W., Abs, M., Forton, E., Henrotin, S., Jongen, Y., Nuttens, V., Paradis, Y., Pearson, E., Quets, S., de Walle, J. V., Verbruggen, P., Zaremba, S., Conjat, M., Mandrillon, J., Mandrillon, P. & Development, A. (2013). The IBA Superconducting Synchrocyclotron Project S2C2, p. 5. Kondo, N., Sakurai, Y., Takata, T., Takai, N., Nakagawa, Y., Tanaka, H., Watanabe, T., Kume, K., Toho, T., Miyatake, S.-i., Suzuki, M., Masunaga, S.-i. & Ono, K. (2015). Localized radiation necrosis model in mouse brain using proton ion beams, Applied Radiation and Isotopes 106: 242–246. Kundel, S. (2019). Towards a Beamline for Small Animal Irradiation at Clinical Proton Therapy Facilities: Experimental and Computational Studies, Master’s thesis, Ludwig Maximilians Universität München. Kurichiyanil, N., Pinto, M., Rösch, T., Kundel, S., Würl, M., Englbrecht, F. S., Schreiber, J. & Parodi, K. (2019). Design of An Adaptable Permanent-Magnet Quadrupole Triplet for Refocusing of Energy Degraded Proton Beams for Small Animal Irradiation, AAPM Annual Meeting, San Antonio TX,USA. Liu, W., Zhang, X., Li, Y. & Mohan, R. (2012). Robust optimization of intensity modulated proton therapy: Robust optimization of IMPT, Medical Physics 39(2): 1079–1091. Moyers, M. F., Reder, C. S. & Lau, D. C. (2007). Generation and Characterization of a Proton Microbeam for Experimental Radiosurgery, Technology in Cancer Research & Treatment 6(3): 205–211. Müller, C., De Prado Leal, M., Dominietto, M. D., Umbricht, C. A., Safai, S., Perrin, R. L., Egloff, M., Bernhardt, P., van der Meulen, N. P., Weber, D. C., Schibli, R. & Lomax, A. J. (2019).33 Combination of Proton Therapy and Radionuclide Therapy in Mice: Preclinical Pilot Study at the Paul Scherrer Institute, Pharmaceutics 11(9): 450. Newhauser, W. D. & Zhang, R. (2015). The physics of proton therapy, Phys. Med. Biol. p. 56. Parodi, K., Assmann, W., Belka, C., Bortfeldt, J., Clevert, D.-A., Dedes, G., Kalunga, R., Kundel, S., Kurichiyanil, N., Lämmer, P., Lascaud, J., Lauber, K., Lovatti, G., Meyer, S., Nitta, M., Pinto, M., Safari, M. J., Schnürle, K., Schreiber, J., Thirolf, P. G., Wieser, H.-P. & Würl, M. (2019). Towards a novel small animal proton irradiation platform: The SIRMIO project, Acta Oncologica pp. 1–6. Parodi, K., Mairani, A., Brons, S., Hasch, B. G., Sommerer, F., Naumann, J., Jäkel, O., Haberer, T. & Debus, J. (2012). Monte Carlo simulations to support start-up and treatment planning of scanned proton and carbon ion therapy at a synchrotron-based facility, Physics in Medicine and Biology 57(12): 3759–3784. Pedroni, E., Scheib, S., Böhringer, T., Coray, A., Grossmann, M., Lin, S. & Lomax, A. (2005). Experimental characterization and physical modelling of the dose distribution of scanned proton pencil beams, Physics in Medicine & Biology 50(3): 541. Penner, S. (1961). Calculations of Properties of Magnetic Deflection Systems, Review of Scientific Instruments 32(2): 150–160. PSI (2019). https://www.psi.ch/de/protontherapy/protonentherapie-am-psi. PTCOG (2019). Facilities in Operation, https://www.ptcog.ch/index.php/facilities-in-operation. Safai, S., Bortfeld, T. & Engelsman, M. (2008). Comparison between the lateral penumbra of a collimated double-scattered beam and uncollimated scanning beam in proton radiotherapy, Physics in Medicine and Biology 53(6): 1729–1750. Schuemann, J., Dowdell, S., Grassberger, C., Min, C. H. & Paganetti, H. (2014). Site-specific range uncertainties caused by dose calculation algorithms for proton therapy, Physics in Medicine and Biology 59(15): 4007–4031. Seltzer, S. M., Fernandez-Varea, J. M., Andreo, P., Bergstrom, P. M. J., Burns, D. T., Krajcar Bronic, I., Ross, C. K. & Salvat, F. (2014). Report 90: Key data for ionizing-radiation dosimetry: Measurement tandards and applications, Journal of the International Commission on Radiation Units and Measurements 14(1): 1–110. Suit, H., Phil, D., Goitein, M., Munzenrider, J., Verhey, L., Blitzer, P., Gragoudas, E., Koehler, A., Urie, M., Gentry, R., Shipley, W., Urano, M., Duttenhaver, J. & Wagner, M. (1982). Evaluation of the clinical applicability of proton beams in definitive fractionated radiation therapy, International Journal of Radiation Oncology*Biology*Physics 8(12): 2199–2205. Takata, T., Kondo, N., Sakurai, Y., Tanaka, H., Hasegawa, T., Kume, K. & Suzuki, M. (2015). Reprint of Localized dose delivering by ion beam irradiation for experimental trial of establishing brain necrosis model, Applied Radiation and Isotopes 106: 104–106. Tommasino, F., Rovituso, M., Fabiano, S., Piffer, S., Manea, C., Lorentini, S., Lanzone, S., Wang, Z., Pasini, M., Burger, W., La Tessa, C., Scifoni, E., Schwarz, M. & Durante, M. (2017). Proton beam characterization in the experimental room of the Trento Proton Therapy facility, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 869: 15–20. van de Water, S., Safai, S., Schippers, J. M., Weber, D. C. & Lomax, A. J. (2019). Towards34 FLASH proton therapy: The impact of treatment planning and machine characteristics on achievable dose rates, Acta Oncologica 58(10): 1463–1469. Verhaegen, F., Dubois, L., Gianolini, S., Hill, M. A., Karger, C. P., Lauber, K., Prise, K. M., Sarrut, D., Thorwarth, D., Vanhove, C., Vojnovic, B., Weersink, R., Wilkens, J. J. & Georg, D. (2018). ESTRO ACROP: Technology for precision small animal radiotherapy research: Optimal use and challenges, Radiotherapy and Oncology 126(3): 471–478. Wiedemann, H. (1993). Particle Accelerator Physics, Springer Berlin Heidelberg. Würl, M., Englbrecht, F., Parodi, K. & Hillbrand, M. (2016). Dosimetric impact of the low-dose envelope of scanned proton beams at a ProBeam facility: Comparison of measurements with TPS and MC calculations, Physics in Medicine and Biology 61(2): 958–973. |