Abstract
Covalent organic frameworks (COFs) have entered the stage as a new generation of porous polymers which stand out by virtue of their crystallinity, diverse framework topologies and accessible pore systems. An important – but still underdeveloped – feature of COFs is their potentially superior stability in comparison to other porous materials. Achieving COFs which are simultaneously crystalline, stable, and functional is still challenging as reversible bond formation is one of the prime prerequisites for the crystallization of COFs. However, as the COF field matures new strategies have surfaced that bypass this crystallinity – stability dichotomy. Three major approaches for obtaining both stable and crystalline COFs have taken form in recent years: Tweaking the reaction conditions for reversible linkages, separating the order inducing step and the stability inducing step, and controlling the structural degrees of freedom during assembly and in the final COF. This review discusses rational approaches to stability and crystallinity engineering in COFs, which are apt at overcoming current challenges in COF design and open up new avenues to new real-world applications of COFs.
Item Type: | Journal article |
---|---|
EU Funded Grant Agreement Number: | 639233 |
EU Projects: | Horizon 2020 > ERC Grants > ERC Starting Grant > ERC Grant 639233: Fuel from sunlight: Covalent organic frameworks as integrated platforms for photocatalytic water splitting and CO2 reduction Horizon 2020 |
Form of publication: | Publisher's Version |
Faculties: | Chemistry and Pharmacy > Department of Chemistry |
Subjects: | 500 Science > 540 Chemistry |
URN: | urn:nbn:de:bvb:19-epub-74276-8 |
ISSN: | 1460-4744 |
Language: | English |
Item ID: | 74276 |
Date Deposited: | 24. Nov 2020, 14:50 |
Last Modified: | 24. Nov 2020, 14:50 |