Abstract
DNA nanotechnology and advances in the DNA origami technique have enabled facile design and synthesis of complex and functional nanostructures. Molecular devices are, however, prone to rapid functional and structural degradation due to the high proportion of surface atoms at the nanoscale and due to complex working environments. Besides stabilizing mechanisms, approach for the self‐repair of functional molecular devices are desirable. Here we exploit the self‐assembly and reconfigurability of DNA origami nanostructures to induce the self‐repair of defects of photoinduced and enzymatic damage. With different examples of repair in DNA nanostructures, we distinguish between unspecific self‐regeneration and damage specific self‐healing mechanisms. Using DNA origami nanorulers studied by atomic force and superresolution DNA PAINT microscopy, quantitative preservation of fluorescence properties is demonstrated with direct potential for improving nanoscale calibration samples.
Dokumententyp: | Zeitschriftenartikel |
---|---|
EU Funded Grant Agreement Number: | 737089 |
EU-Projekte: | Horizon 2020 > Marie Skłodowska Curie Actions > Marie Skłodowska-Curie Individual Fellowships |
Keywords: | DNA; Molecular devices; Nanotechnology; Selfassembly; Self-Healing |
Fakultät: | Chemie und Pharmazie > Department Chemie |
Fakultätsübergreifende Einrichtungen: | Center for NanoScience (CENS) |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 540 Chemie |
URN: | urn:nbn:de:bvb:19-epub-74303-8 |
Sprache: | Englisch |
Dokumenten ID: | 74303 |
Datum der Veröffentlichung auf Open Access LMU: | 30. Nov. 2020, 09:45 |
Letzte Änderungen: | 01. Nov. 2021, 06:00 |
Literaturliste: | [1] V. Balzani, A. Credi, F. M. Raymo, J. F. Stoddart, Angewandte Chemie (International ed. in English) 2000, 39, 3348-3391. [2] B. L. Feringa, N. Koumura, R. A. Van Delden, M. K. J. Ter Wiel, Applied Physics A: Materials Science and Processing 2002, 75, 301-308. [3] F. Lancia, A. Ryabchun, N. Katsonis, Nature Reviews Chemistry 2019, 3, 536-551. [4] S. Liu, Q. Jiang, Y. Wang, B. Ding, Advanced Healthcare Materials 2019, 8, 1801658. [5] G. Saper, H. Hess, Chemical Reviews 2020, 120, 288-309. [6] S. Nummelin, B. Shen, P. Piskunen, Q. Liu, M. A. Kostiainen, V. Linko, ACS Synthetic Biology 2020, 9, 1923-1940. [7] P. W. K. Rothemund, Nature 2006, 440, 297-302. [8] P. Wang, T. A. Meyer, V. Pan, P. K. Dutta, Y. Ke, Chem 2017, 2, 359-382. [9] H. Ramezani, H. Dietz, Nature Reviews Genetics 2020, 21, 5-26. [10] E. S. Andersen, M. Dong, M. M. Nielsen, K. Jahn, R. Subramani, W. Mamdouh, M. M. Golas, B. Sander, H. Stark, C. L. P. Oliveira, J. S. Pedersen, V. Birkedal, F. Besenbacher, K. V. Gothelf, J. Kjems, Nature 2009, 459, 73-76. [11] Q. Jiang, S. Liu, J. Liu, Z.-G. Wang, B. Ding, Advanced Materials 2019, 31, 1804785. [12] A. Kuzyk, R. Jungmann, G. P. Acuna, N. Liu, ACS Photonics 2018, 5, 1151-1163. [13] D. Selnihhin, S. M. Sparvath, S. Preus, V. Birkedal, E. S. Andersen, ACS Nano 2018, 12, 5699-5708. [14] V. Amendola, M. Meneghetti, Nanoscale 2009, 1, 74-88. [15] J. A. Swenberg, K. Lu, B. C. Moeller, L. Gao, P. B. Upton, J. Nakamura, T. B. Starr, Toxicological Sciences 2011, 120, 130-145. [16] B. Tudek, A. Winczura, J. Janik, A. Siomek, M. Foksinski, R. Oliński, Am J Transl Res 2010, 2, 254-284. [17] M. M. Najafpour, M. Fekete, D. J. Sedigh, E. M. Aro, R. Carpentier, J. J. Eaton-Rye, H. Nishihara, J. R. Shen, S. I. Allakhverdiev, L. Spiccia, ACS Catalysis 2015, 5, 1499-1512. [18] J. Theis, M. Schroda, Plant Signaling and Behavior 2016, 11, 1-8. [19] S. D. Perrault, W. M. Shih, ACS Nano 2014, 8, 5132-5140. [20] N. P. Agarwal, M. Matthies, F. N. Gür, K. Osada, T. L. Schmidt, Angew Chem Int Ed Engl 2017, 56, 5460-5464. [21] H. Bila, E. E. Kurisinkal, M. M. C. Bastings, Biomaterials Science 2019, 7, 532-541. [22] L. Nguyen, M. Döblinger, T. Liedl, A. Heuer-Jungemann, Angewandte Chemie International Edition 2019, 58, 912-916. [23] Y. Li, R. Schulman, Nano Letters 2019, 19, 3751-3760. [24] F. Stehr, J. Stein, J. Bauer, C. Niederauer, R. Jungmann, K. Ganzinger, P. Schwille, bioRxiv 2020, 2020.2005.2017.100354. [25] S. Fan, D. Wang, J. Cheng, Y. Liu, T. Luo, D. Cui, Y. Ke, J. Song, Angewandte Chemie International Edition 2020, 59, 12991-12997. [26] Y. Zhang, Q. Li, X. Liu, C. Fan, H. Liu, L. Wang, Small 2020, 16, 2000793. [27] C. M. Platnich, A. A. Hariri, J. F. Rahbani, J. B. Gordon, H. F. Sleiman, G. Cosa, ACS Nano 2018, 12, 12836-12846. [28] C. Vietz, M. L. Schütte, Q. Wei, L. Richter, B. Lalkens, A. Ozcan, P. Tinnefeld, G. P. Acuna, ACS Omega 2019, 4, 637-642. [29] J. J. Schmied, M. Raab, C. Forthmann, E. Pibiri, B. Wünsch, T. Dammeyer, P. Tinnefeld, Nature Protocols 2014, 9, 1367-1391. [30] J. J. Schmied, A. Gietl, P. Holzmeister, C. Forthmann, C. Steinhauer, T. Dammeyer, P. Tinnefeld, Nature Methods 2012, 9, 1133-1134. [31] M. Raab, I. Jusuk, J. Molle, E. Buhr, B. Bodermann, D. Bergmann, H. Bosse, P. Tinnefeld, Scientific Reports 2018, 8, 1780. [32] M. Scheckenbach, J. Bauer, J. Zähringer, F. Selbach, P. Tinnefeld, APL Materials 2020, 8, 110902. [33] U. Resch-Genger, K. Hoffmann, W. Nietfeld, A. Engel, J. Neukammer, R. Nitschke, B. Ebert, R. Macdonald, J Fluoresc 2005, 15, 337-362. [34] M. T. Strauss, F. Schueder, D. Haas, P. C. Nickels, R. Jungmann, Nature Communications 2018, 9, 1600. [35] A. Ray, K. Liosi, S. N. Ramakrishna, N. D. Spencer, A. Kuzuya, Y. Yamakoshi, J Phys Chem Lett 2020, 7819-7826. [36] R. Jungmann, C. Steinhauer, M. Scheible, A. Kuzyk, P. Tinnefeld, F. C. Simmel, 2010, 10, 4756-4761. [37] P. Blumhardt, J. Stein, J. Mücksch, F. Stehr, J. Bauer, R. Jungmann, P. Schwille, Molecules 2018, 23, 3165. [38] T. Cordes, J. Vogelsang, P. Tinnefeld, J Am Chem Soc 2009, 131, 5018-5019. [39] R. Roy, S. Hohng, T. Ha, Nat Methods 2008, 5, 507-516. [40] J. Vogelsang, T. Cordes, C. Forthmann, C. Steinhauer, P. Tinnefeld, Proceedings of the National Academy of Sciences 2009, 106, 8107-8112. [41] J. Schnitzbauer, M. T. Strauss, T. Schlichthaerle, F. Schueder, R. Jungmann, Nature Protocols 2017, 12, 1198-1228. [42] S. M. Douglas, I. Bachelet, G. M. Church, Science 2012, 335, 831-834. [43] F. C. Simmel, B. Yurke, H. R. Singh, Chemical Reviews 2019, 119, 6326-6369. [44] S. Surana, D. Bhatia, Y. Krishnan, Methods 2013, 64, 94-100. [45] J. W. Conway, C. K. Mc Laughlin, K. J. Castor, H. Sleiman, Chemical Communications 2013, 49, 1172-1174. [46] Q. Mei, X. Wei, F. Su, Y. Liu, C. Youngbull, R. Johnson, S. Lindsay, H. Yan, D. Meldrum, Nano Letters 2011, 11, 1477-1482. [47] N. P. Agarwal, M. Matthies, B. Joffroy, T. L. Schmidt, ACS Nano 2018, 12, 2546-2553. [48] I. H. Song, S. W. Shin, K. S. Park, Y. Lansac, Y. H. Jang, S. H. Um, Scientific Reports 2015, 5, 17722. [49] S. Ramakrishnan, L. Schärfen, K. Hunold, S. Fricke, G. Grundmeier, M. Schlierf, A. Keller, G. Krainer, Nanoscale 2019, 11, 16270-16276. |