Abstract
Ageing, one of the largest risk factors for many complex diseases, is highly interconnectedto metabolic processes. Investigating the changes in metabolite concentration during ageing amonghealthy individuals offers us unique insights to healthy ageing. We aim to identify ageing-associatedmetabolites that are independent from chronological age to deepen our understanding of thelong-term changes in metabolites upon ageing. Sex-stratified longitudinal analyses were performedusing fasting serum samples of 590 healthy KORA individuals (317 women and 273 men) whoparticipated in both baseline (KORA S4) and seven-year follow-up (KORA F4) studies. Replicationwas conducted using serum samples of 386 healthy CARLA participants (195 women and 191 men)in both baseline (CARLA-0) and four-year follow-up (CARLA-1) studies. Generalized estimationequation models were performed on each metabolite to identify ageing-associated metabolitesafter adjusting for baseline chronological age, body mass index, physical activity, smoking status,alcohol intake and systolic blood pressure. Literature researches were conducted to understandtheir biochemical relevance. Out of 122 metabolites analysed, we identified and replicated five (C18,arginine, ornithine, serine and tyrosine) and four (arginine, ornithine, PC aa C36:3 and PC ae C40:5)significant metabolites in women and men respectively. Arginine decreased, while ornithine increasedin both sexes. These metabolites are involved in several ageing processes: apoptosis, mitochondrialdysfunction, inflammation, lipid metabolism, autophagy and oxidative stress resistance. The studyreveals several significant ageing-associated metabolite changes with two-time-point measurementson healthy individuals. Larger studies are required to confirm our findings.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Publikationsform: | Publisher's Version |
Keywords: | ageing; chronological age; targeted metabolomics; longitudinal study; amino acids |
Fakultät: | Medizin > Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
URN: | urn:nbn:de:bvb:19-epub-74842-1 |
Sprache: | Englisch |
Dokumenten ID: | 74842 |
Datum der Veröffentlichung auf Open Access LMU: | 21. Jan. 2021, 06:00 |
Letzte Änderungen: | 21. Jan. 2021, 06:00 |
Literaturliste: | 1.Rodríguez-Rodero, S.; Fernández-Morera, J.L.; Menéndez-Torre, E.; Calvanese, V.; Fernández, A.F.; Fraga, M.F.Aging genetics and aging.Aging Dis.2011,2, 186–195. [PubMed]2.Bürkle, A.; Moreno-Villanueva, M.; Bernhard, J.; Blasco, M.; Zondag, G.; Hoeijmakers, J.H.J.; Toussaint, O.;Grubeck-Loebenstein, B.; Mocchegiani, E.; Collino, S.; et al. MARK-AGE biomarkers of ageing.Mech. Ageing Dev.2015,151, 2–12. [CrossRef] [PubMed]3.Adams, J.M.; White, M. Biological ageing: A fundamental, biological link between socio-economic statusand health?Eur. J. Public Health2004,14, 331–334. [CrossRef] [PubMed]4.Niccoli, T.; Partridge, L. Ageing as a risk factor for disease.Curr. Biol.2012,22, R741–R752. [CrossRef][PubMed]5.Hulbert, A.J.; Pamplona, R.; Buffenstein, R.; Buttemer, W.A. Life and death: Metabolic rate, membranecomposition, and life span of animals.Physiol. Rev.2007,87, 1175–1213. [CrossRef] [PubMed]6.Valdes, A.M.; Glass, D.; Spector, T.D. Omics technologies and the study of human ageing.Nat. Rev. Genet.2013,14, 601–607. [CrossRef] [PubMed]7.Sebastiani, P.; Thyagarajan, B.; Sun, F.; Schupf, N.; Newman, A.B.; Montano, M.; Perls, T.T. Biomarkersignatures of aging.Aging Cell2017,16, 329–338. [CrossRef] [PubMed]8.Sprott, R.L. Biomarkers of aging and disease: Introduction and definitions.Exp. Gerontol.2010,45, 2–4.[CrossRef] [PubMed]9.Deelen, J.; Beekman, M.; Capri, M.; Franceschi, C.; Slagboom, P.E. Identifying the genomic determinants of agingand longevity in human population studies: Progress and challenges.BioEssays News Rev. Mol. Cell. Dev. Biol.2013,35, 386–396. [CrossRef] [PubMed]10.Mäkinen, V.-P.; Ala-Korpela, M. Metabolomics of aging requires large-scale longitudinal studies withreplication.Proc. Natl. Acad. Sci. USA2016,113, E3470. [CrossRef] [PubMed]11.Yu, Z.; Zhai, G.; Singmann, P.; He, Y.; Xu, T.; Prehn, C.; Römisch-Margl, W.; Lattka, E.; Gieger, C.; Soranzo, N.; et al.Human serum metabolic profiles are age dependent.Aging Cell2012,11, 960–967. [CrossRef] [PubMed]12.Du, F.; Virtue, A.; Wang, H.; Yang, X.-F. Metabolomic analyses for atherosclerosis, diabetes, and obesity.Biomark. Res.2013,1, 17. [CrossRef] [PubMed]13.Sharman, A.; Zhumadilov, Z.The Scientific Basis for Healthy Aging and Antiaging Process; Mary Ann Liebert, Inc.:New York, NY, USA, 2011.14.Kristal, B.S.; Shurubor, Y.I. Metabolomics: Opening another window into aging.Sci. Aging Knowl. Environ. Sage Ke2005,2005, pe19. [CrossRef] [PubMed]15.Jové, M.; Maté, I.; Naudí, A.; Mota-Martorell, N.; Portero-Otín, M.; de La Fuente, M.; Pamplona, R. Humanaging is a metabolome-related matter of gender.J. Gerontol. Ser. A Biol. Sci. Med. Sci.2016,71, 578–585.[CrossRef] [PubMed]16.Roberts, L.D.; Souza, A.L.; Gerszten, R.E.; Clish, C.B. Targeted metabolomics.Curr. Protoc. Mol. Biol.2012,98, 1–24. [CrossRef] [PubMed]17.Wang-Sattler, R.; Yu, Z.; Herder, C.; Messias, A.C.; Floegel, A.; He, Y.; Heim, K.; Campillos, M.; Holzapfel, C.;Thorand, B.; et al. Novel biomarkers for pre-diabetes identified by metabolomics.Mol. Syst. Biol.2012,8, 615.[CrossRef] [PubMed]18.Zhang, A.; Sun, H.; Xu, H.; Qiu, S.; Wang, X. Cell metabolomics.Omics J. Integr. Biol.2013,17, 495–501.[CrossRef] [PubMed]19.Slupsky, C.M.; Rankin, K.N.; Wagner, J.; Fu, H.; Chang, D.; Weljie, A.M.; Saude, E.J.; Lix, B.; Adamko, D.J.;Shah, S.; et al. Investigations of the effects of gender, diurnal variation, and age in human urinarymetabolomic profiles.Anal. Chem.2007,79, 6995–7004. [CrossRef] [PubMed]20.Lawton, K.A.; Berger, A.; Mitchell, M.; Milgram, K.E.; Evans, A.M.; Guo, L.; Hanson, R.W.; Kalhan, S.C.;Ryals, J.A.; Milburn, M.V. Analysis of the adult human plasma metabolome.Pharmacogenomics2008,9,383–397. [CrossRef] [PubMed]21.Psihogios, N.G.; Gazi, I.F.; Elisaf, M.S.; Seferiadis, K.I.; Bairaktari, E.T. Gender-related and age-relatedurinalysis of healthy subjects by NMR-based metabonomics.Nmr Biomed.2008,21, 195–207. [CrossRef][PubMed]22.D’Adamo, P.; Ulivi, S.; Beneduci, A.; Pontoni, G.; Capasso, G.; Lanzara, C.; Andrighetto, G.; Hladnik, U.;Nunes, V.; Palacin, M.; et al. Metabonomics and population studies: Age-related amino acids excretion and nferring networks through the study of urine samples in two Italian isolated populations.Amino Acids2010,38, 65–73. [CrossRef] [PubMed]23.Menni, C.; Kastenmüller, G.; Petersen, A.K.; Bell, J.T.; Psatha, M.; Tsai, P.-C.; Gieger, C.; Schulz, H.; Erte, I.;John, S.; et al. Metabolomic markers reveal novel pathways of ageing and early development in humanpopulations.Int. J. Epidemiol.2013,42, 1111–1119. [CrossRef] [PubMed]24.Lee, S.H.; Park, S.; Kim, H.-S.; Jung, B.H. Metabolomic approaches to the normal aging process.Metabolomics2014,10, 1268–1292. [CrossRef]25.Sedlmeier, A.; Kluttig, A.; Giegling, I.; Prehn, C.; Adamski, J.; Kastenmüller, G.; Lacruz, M.E. The humanmetabolic profile reflects macro- and micronutrient intake distinctly according to fasting time.Sci. Rep.2018,8, 12262. [CrossRef] [PubMed]26.Thompson, D.K.; Sloane, R.; Bain, J.R.; Stevens, R.D.; Newgard, C.B.; Pieper, C.F.; Kraus, V.B. Daily variationof serum acylcarnitines and amino acids.Metabolomics2012,8, 556–565. [CrossRef] [PubMed]27.Krug, S.; Kastenmüller, G.; Stückler, F.; Rist, M.J.; Skurk, T.; Sailer, M.; Raffler, J.; Römisch-Margl, W.;Adamski, J.; Prehn, C.; et al. The dynamic range of the human metabolome revealed by challenges.Faseb J. Off. Publ. Fed. Am. Soc. Exp. Biol.2012,26, 2607–2619. [CrossRef] [PubMed]28.Mittelstrass, K.; Ried, J.S.; Yu, Z.; Krumsiek, J.; Gieger, C.; Prehn, C.; Roemisch-Margl, W.; Polonikov, A.;Peters, A.; Theis, F.J.; et al. Discovery of sexual dimorphisms in metabolic and genetic biomarkers.PLoS Genet.2011,7, e1002215. [CrossRef] [PubMed]29.Trabado, S.; Al-Salameh, A.; Croixmarie, V.; Masson, P.; Corruble, E.; Fève, B.; Colle, R.; Ripoll, L.; Walther, B.;Boursier-Neyret, C.; et al. The human plasma-metabolome: Reference values in 800 French healthyvolunteers; impact of cholesterol, gender and age.PLoS ONE2017,12, e0173615. [CrossRef] [PubMed]30.Maeba, R.; Maeda, T.; Kinoshita, M.; Takao, K.; Takenaka, H.; Kusano, J.; Yoshimura, N.; Takeoka, Y.;Yasuda, D.; Okazaki, T.; et al. Plasmalogens in human serum positively correlate with high-densitylipoprotein and decrease with aging.J. Atheroscler. Thromb.2007,14, 12–18. [CrossRef] [PubMed]31.Mauvais-Jarvis, F. Sex differences in metabolic homeostasis, diabetes, and obesity.Biol. Sex Differ.2015,6, 14.[CrossRef] [PubMed]32.Auro, K.; Joensuu, A.; Fischer, K.; Kettunen, J.; Salo, P.; Mattsson, H.; Niironen, M.; Kaprio, J.; Eriksson, J.G.;Lehtimäki, T.; et al. A metabolic view on menopause and ageing.Nat. Commun.2014,5, 4708. [CrossRef][PubMed]33.Ke, C.; Hou, Y.; Zhang, H.; Yang, K.; Wang, J.; Guo, B.; Zhang, F.; Li, H.; Zhou, X.; Li, Y.; et al. Plasmametabolic profiles in women are menopause dependent.PLoS ONE2015,10, e0141743. [CrossRef] [PubMed]34.Minois, N. Molecular basis of the ‘anti-aging’ effect of spermidine and other natural polyamines-amini-review.Gerontology2014,60, 319–326. [CrossRef] [PubMed]35.Santhanam, L.; Christianson, D.W.; Nyhan, D.; Berkowitz, D.E. Arginase and vascular aging.J. Appl. Physiol.2008,105, 1632–1642. [CrossRef] [PubMed]36.Yang, Z.; Ming, X.-F. Arginase: The emerging therapeutic target for vascular oxidative stress and inflammation.Front. Immunol.2013,4, 149. [CrossRef] [PubMed]37.Tao, Y.; Liu, X.J. Deficiency of ovarian ornithine decarboxylase contributes to aging-related egg aneuploidyin mice.Aging Cell2013,12, 42–49. [CrossRef] [PubMed]38.Aichler, M.; Borgmann, D.; Krumsiek, J.; Buck, A.; MacDonald, P.E.; Fox, J.E.M.; Lyon, J.; Light, P.E.;Keipert, S.; Jastroch, M.; et al. N-acyl taurines and acylcarnitines cause an imbalance in insulin synthesisand secretion provokingβcell dysfunction in type 2 diabetes.Cell Metab.2017,25, 1334–1347.e4. [CrossRef][PubMed]39.Mirisola, M.G.; Taormina, G.; Fabrizio, P.; Wei, M.; Hu, J.; Longo, V.D. Serine-and threonine/valine-dependentactivation of PDK and Tor orthologs converge on Sch9 to promote aging.PLoS Genet.2014,10, e1004113.[CrossRef] [PubMed]40.Gamella-Pozuelo, L.; Grande, M.T.; Clemente-Lorenzo, M.; Murillo-Gómez, C.; de Pablo, F.;López-Novoa, J.M.; Hernández-Sánchez, C. Tyrosine hydroxylase haploinsufficiency prevents age-associatedarterial pressure elevation and increases half-life in mice.Biochim. Biophys. Acta Mol. Basis Dis.2017,1863,113–120. [CrossRef] [PubMed]41.Hertel, J.; Friedrich, N.; Wittfeld, K.; Pietzner, M.; Budde, K.; van der Auwera, S.; Lohmann, T.; Teumer, A.;Völzke, H.; Nauck, M.; et al. Measuring biological age via metabonomics: The metabolic age score.J. Proteome Res.2016,15, 400–410. [CrossRef] [PubMed] 42.Rotter, M.; Brandmaier, S.; Covic, M.; Burek, K.; Hertel, J.; Troll, M.; Bader, E.; Adam, J.; Prehn, C.; Rathkolb, B.; et al.Night shift work affects urine metabolite profiles of nurses with early chronotype.Metabolites2018,8, 45.[CrossRef] [PubMed]43.Meisinger, C.; Stöckl, D.; Rückert, I.M.; Döring, A.; Thorand, B.; Heier, M.; Huth, C.; Belcredi, P.; Kowall, B.;Rathmann, W. Serum potassium is associated with prediabetes and newly diagnosed diabetes in hypertensiveadults from the general population: The KORA F4-study.Diabetologia2013,56, 484–491. [CrossRef] [PubMed]44.Xu, T.; Brandmaier, S.; Messias, A.C.; Herder, C.; Draisma, H.H.M.; Demirkan, A.; Yu, Z.; Ried, J.S.; Haller, T.;Heier, M.; et al. Effects of metformin on metabolite profiles and LDL cholesterol in patients with type 2diabetes.Diabetes Care2015,38, 1858–1867. [CrossRef] [PubMed]45.Greiser, K.H.; Kluttig, A.; Schumann, B.; Kors, J.A.; Swenne, C.A.; Kuss, O.; Werdan, K.; Haerting, J.Cardiovascular disease, risk factors and heart rate variability in the elderly general population: Design andobjectives of the CARdiovascular disease, living and ageing in halle (CARLA) study.BMC Cardiovasc. Disord.2005,5, 33. [CrossRef] [PubMed]46.Lacruz, M.E.; Kluttig, A.; Tiller, D.; Medenwald, D.; Giegling, I.; Rujescu, D.; Prehn, C.; Adamski, J.; Frantz, S.;Greiser, K.H.; et al. Cardiovascular risk factors associated with blood metabolite concentrations and theiralterations during a 4-year period in a population-based cohort.Circ. Cardiovasc. Genet.2016,9, 487–494.[CrossRef] [PubMed]47.Römisch-Margl, W.; Prehn, C.; Bogumil, R.; Röhring, C.; Suhre, K.; Adamski, J. Procedure for tissue samplepreparation and metabolite extraction for high-throughput targeted metabolomics.Metabolomics2012,8,133–142. [CrossRef]48.Zukunft, S.; Sorgenfrei, M.; Prehn, C.; Möller, G.; Adamski, J. Targeted metabolomics of dried blood spotextracts.Chromatographia2013,76, 1295–1305. [CrossRef]49.Nakamura, E.; Miyao, K. Sex differences in human biological aging.J. Gerontol. Ser. A Biol. Sci. Med. Sci.2008,63, 936–944. [CrossRef]50.Ostan, R.; Monti, D.; Gueresi, P.; Bussolotto, M.; Franceschi, C.; Baggio, G. Gender, aging and longevityin humans: An update of an intriguing/neglected scenario paving the way to a gender-specific medicine.Clin. Sci. (Lond.)2016,130, 1711–1725. [CrossRef] [PubMed]. |