Abstract
In an effort to identify target genes in acute myeloid leukemia (AML), we compared gene expression profiles between normal and AML cells from various publicly available datasets. We identified CD99, a gene that is up-regulated in AML patients. In 186 patients from The Cancer Genome Atlas AML dataset, CD99 was over-expressed in patients with FLT3-ITD and was down-regulated in patients with TP53 mutations. CD99 is a trans-membrane protein expressed on leukocytes and plays a role in cell adhesion, trans-endothelial migration, and T-cell differentiation. The CD99 gene encodes two isoforms with distinct expression and functional profiles in both normal and malignant tissues. Here we report that, although the CD99 long isoform initially induces an increase in cell proliferation, it also induces higher levels of reactive oxygen species, DNA damage, apoptosis and a subsequent decrease in cell viability. In several leukemia murine models, the CD99 long isoform delayed disease progression and resulted in lower leukemia engraftment in the bone marrow. Furthermore, the CD99 monoclonal antibody reduced cell viability, colony formation, and cell migration, and induced cell differentiation and apoptosis in leukemia cell lines and primary blasts. Mechanistically, CD99 long isoform resulted in transient induction followed by a dramatic decrease in both ERK and SRC phosphorylation. Altogether, our study provides new insights into the role of CD99 isoforms in AML that could potentially be relevant for the preclinical development of CD99 targeted therapy.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Publikationsform: | Publisher's Version |
Fakultät: | Medizin > Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
URN: | urn:nbn:de:bvb:19-epub-74968-7 |
ISSN: | 0390-6078 |
Sprache: | Englisch |
Dokumenten ID: | 74968 |
Datum der Veröffentlichung auf Open Access LMU: | 01. Feb. 2021, 06:06 |
Letzte Änderungen: | 01. Feb. 2021, 06:06 |
Literaturliste: | Lowenberg B. Acute myeloid leukemia: the challenge of capturing disease variety. Hematology Am Soc Hematol Educ Program. 2008;1-11. Google Scholar Gelin C, Aubrit F, Phalipon A. The E2 antigen, a 32 kd glycoprotein involved in T-cell adhesion processes, is the MIC2 gene product. Embo J. 1989; 8(11):3253-3259. PubMed|Google Scholar Dworzak MN, Fritsch G, Buchinger P. Flow cytometric assessment of human MIC2 expression in bone marrow, thymus, and peripheral blood. Blood. 1994; 83(2):415-425. PubMed|Google Scholar Schenkel AR, Mamdouh Z, Chen X. CD99 plays a major role in the migration of monocytes through endothelial junctions. Nat Immunol. 2002; 3(2):143-150. PubMed|https://doi.org/10.1038/ni749|Google Scholar Sullivan DP, Watson RL, Muller WA. 4D intravital microscopy uncovers critical strain differences for the roles of PECAM and CD99 in leukocyte diapedesis. Am J Physiol Heart Circ Physiol. 2016; 311(3):H621-H632. PubMed|https://doi.org/10.1152/ajpheart.00289.2016|Google Scholar Ambros IM, Ambros PF, Strehl S. MIC2 is a specific marker for Ewing’s sarcoma and peripheral primitive neuroectodermal tumors. Evidence for a common histogenesis of Ewing’s sarcoma and peripheral primitive neuroectodermal tumors from MIC2 expression and specific chromosome aberration. Cancer. 1991; 67(7):1886-1893. PubMed|https://doi.org/10.1002/1097-0142(19910401)67:7<1886::AID-CNCR2820670712>3.0.CO;2-U|Google Scholar Seol HJ, Chang JH, Yamamoto J. Overexpression of CD99 Increases the Migration and Invasiveness of Human Malignant Glioma Cells. Genes Cancer. 2012; 3(9-10):535-549. PubMed|https://doi.org/10.1177/1947601912473603|Google Scholar Pelmus M, Guillou L, Hostein I. Monophasic fibrous and poorly differentiated synovial sarcoma: immunohistochemical reassessment of 60 t(X;18)(SYT-SSX)-positive cases. Am J Surg Pathol. 2002; 26(11):1434-1440. PubMed|https://doi.org/10.1097/00000478-200211000-00005|Google Scholar Hartel PH, Jackson J, Ducatman BS, Zhang P. CD99 immunoreactivity in atypical fibrox-anthoma and pleomorphic malignant fibrous histiocytoma: a useful diagnostic marker. J Cutan Pathol. 2006; 33(Suppl 2):24-28. PubMed|https://doi.org/10.1111/j.1600-0560.2006.00492.x|Google Scholar Dworzak MN, Fritsch G, Fleischer C. CD99 (MIC2) expression in paediatric B-lineage leukaemia/lymphoma reflects maturation-associated patterns of normal B-lymphopoiesis. Br J Haematol. 1999; 105(3):690-695. PubMed|https://doi.org/10.1046/j.1365-2141.1999.01426.x|Google Scholar Sung CO, Ko YH, Park S, Kim K, Kim W. Immunoreactivity of CD99 in non-Hodgkin’s lymphoma: unexpected frequent expression in ALK-positive anaplastic large cell lymphoma. J Korean Med Sci. 2005; 20(6):952-956. PubMed|https://doi.org/10.3346/jkms.2005.20.6.952|Google Scholar Buxton D, Bacchi CE, Gualco G. Frequent expression of CD99 in anaplastic large cell lymphoma: a clinicopathologic and immunohistochemical study of 160 cases. Am J Clin Pathol. 2009; 131(4):574-579. PubMed|https://doi.org/10.1309/AJCPE68HZXCGWTKK|Google Scholar Jung KC, Park WS, Bae YM. Immunoreactivity of CD99 in stomach cancer. J Korean Med Sci. 2002;483-489. Google Scholar Yoo SH, Han J, Kim TJ, Chung DH. Expression of CD99 in Pleomorphic Carcinomas of the Lung. J Korean Med Sci. 2005; 20(1):50-55. PubMed|https://doi.org/10.3346/jkms.2005.20.1.50|Google Scholar Ventura S, Aryee DNT, Felicetti F. CD99 regulates neural differentiation of Ewing sarcoma cells through miR-34a-Notch-mediated control of NF-|[kappa]|B signaling. Oncogene. 2015; 35(30):3944-3954. Google Scholar Zhang PJ, Barcos M, Stewart CC. Immunoreactivity of MIC2 (CD99) in acute myelogenous leukemia and related diseases. Mod Pathol. 2000; 4:452-458. Google Scholar Chung SS, Eng WS, Hu W. CD99 is a therapeutic target on disease stem cells in myeloid malignancies. Sci Transl Med. 2017; 9(374)Google Scholar Pasello M, Manara MC, Scotlandi K. CD99 at the crossroads of physiology and pathology. J Cell Commun Signal. 2018; 12(1):55-68. Google Scholar Gao J, Aksoy BA, Dogrusoz U. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013; 6(269):11. Google Scholar Ley TJ, Miller C, Ding L. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013; 368(22):2059-2074. PubMed|https://doi.org/10.1056/NEJMoa1301689|Google Scholar Andersson A, Ritz C, Lindgren D. Microarray-based classification of a consecutive series of 121 childhood acute leukemias: prediction of leukemic and genetic subtype as well as of minimal residual disease status. Leukemia. 2007; 21(6):1198-1203. PubMed|https://doi.org/10.1038/sj.leu.2404688|Google Scholar Haferlach T, Kohlmann A, Wieczorek L. Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations in Leukemia Study Group. J Clin Oncol. 2010; 28(15):2529-2537. PubMed|https://doi.org/10.1200/JCO.2009.23.4732|Google Scholar Valk PJ, Verhaak RG, Beijen MA. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med. 2004; 350(16):1617-1628. PubMed|https://doi.org/10.1056/NEJMoa040465|Google Scholar Klein HU, Ruckert C, Kohlmann A. Quantitative comparison of microarray experiments with published leukemia related gene expression signatures. BMC Bioinformatics. 2009; 10:422. PubMed|https://doi.org/10.1186/1471-2105-10-422|Google Scholar Barnes M, Freudenberg J, Thompson S, Aronow B, Pavlidis P. Experimental comparison and cross-validation of the Affymetrix and Illumina gene expression analysis platforms. Nucleic Acids Res. 2005; 33(18):5914-5923. PubMed|https://doi.org/10.1093/nar/gki890|Google Scholar Bullinger L, Dohner K, Bair E. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med. 2004; 350(16):1605-1616. PubMed|https://doi.org/10.1056/NEJMoa031046|Google Scholar Metzeler KH, Hummel M, Bloomfield CD. An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia. Blood. 2008; 112(10):4193-4201. PubMed|https://doi.org/10.1182/blood-2008-02-134411|Google Scholar Balgobind BV, Van den Heuvel-Eibrink MM, De Menezes RX. Evaluation of gene expression signatures predictive of cytogenetic and molecular subtypes of pediatric acute myeloid leukemia. Haematologica. 2011; 96(2):221-230. PubMed|https://doi.org/10.3324/haematol.2010.029660|Google Scholar Han L, Qiu P, Zeng Z. Single-cell mass cytometry reveals intracellular survival/pro-liferative signaling in FLT3-ITD-mutated AML stem/progenitor cells. Cytometry A. 2015; 87(4):346-356. PubMed|https://doi.org/10.1002/cyto.a.22628|Google Scholar Bonardi F, Fusetti F, Deelen P, van Gosliga D, Vellenga E, Schuringa JJ. A proteomics and transcriptomics approach to identify leukemic stem cell (LSC) markers. Mol Cell Proteomics. 2013; 12(3):626-637. PubMed|https://doi.org/10.1074/mcp.M112.021931|Google Scholar Kikushige Y, Shima T, Takayanagi S. TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell. 2010; 7(6):708-717. PubMed|https://doi.org/10.1016/j.stem.2010.11.014|Google Scholar Bernard G, Zoccola D, Deckert M. The E2 molecule (CD99) specifically triggers homotypic aggregation of CD4+ CD8+ thymocytes. J Immunol. 1995; 154(1):26-32. PubMed|Google Scholar Cerisano V, Aalto Y, Perdichizzi S. Molecular mechanisms of CD99-induced caspase-independent cell death and cell-cell adhesion in Ewing’s sarcoma cells: actin and zyxin as key intracellular mediators. Oncogene. 2004; 23(33):5664-5674. PubMed|https://doi.org/10.1038/sj.onc.1207741|Google Scholar Byun HJ, Hong IK, Kim E. A splice variant of CD99 increases motility and MMP-9 expression of human breast cancer cells through the AKT-, ERK-, and JNK-dependent AP-1 activation signaling pathways. J Biol Chem. 2006; 281(46):34833-34847. PubMed|https://doi.org/10.1074/jbc.M605483200|Google Scholar Manara MC, Terracciano M, Mancarella C. CD99 triggering induces methuosis of Ewing sarcoma cells through IGF-1R/RAS/Rac1 signaling. Oncotarget. 2016; 7(48):79925-79942. https://doi.org/10.18632/oncotarget.13160|Google Scholar Guerzoni C, Fiori V, Terracciano M. CD99 triggering in Ewing sarcoma delivers a lethal signal through p53 pathway reactivation and cooperates with doxorubicin. Clin Cancer Res. 2015; 21(1):146-156. PubMed|https://doi.org/10.1158/1078-0432.CCR-14-0492|Google Scholar Lee KJ, Kim Y, Yoo YH. CD99-Derived Agonist Ligands Inhibit Fibronectin-Induced Activation of beta1 Integrin through the Protein Kinase A/SHP2/Extracellular Signal-Regulated Kinase/PTPN12/Focal Adhesion Kinase Signaling Pathway. Mol Cell Biol. 2017; 37(14)Google Scholar Warsito D, Sjostrom S, Andersson S, Larsson O, Sehat B. Nuclear IGF1R is a transcriptional co-activator of LEF1/TCF. EMBO Rep. 2012; 13(3):244-250. PubMed|https://doi.org/10.1038/embor.2011.251|Google Scholar Kavalar R, Pohar Marinsek Z, Jereb B, Cagran B, Golouh R. Prognostic value of immunohistochemistry in the Ewing’s sarcoma family of tumors. Med Sci Monit. 2009; 15(8):CR442-452. PubMed|Google Scholar Angelini DF, Ottone T, Guerrera G. A Leukemia-Associated CD34/CD123/CD25/ CD99+ Immunophenotype Identifies FLT3-Mutated Clones in Acute Myeloid Leukemia. Clin Cancer Res. 2015; 21(17):3977-3985. PubMed|https://doi.org/10.1158/1078-0432.CCR-14-3186|Google Scholar Kadia TM, Jain P, Ravandi F. TP53 mutations in newly diagnosed Acute Myeloid Leukemia –Clinico-molecular characteristics, response to therapy, and outcomes. Cancer. 2016; 122(22):3484-3491. https://doi.org/10.1002/cncr.30203|Google Scholar Scotlandi K, Zuntini M, Manara MC. CD99 isoforms dictate opposite functions in tumour malignancy and metastases by activating or repressing c-Src kinase activity. Oncogene. 2007; 26(46):6604-6618. PubMed|https://doi.org/10.1038/sj.onc.1210481|Google Scholar Lee EJ, Lee HG, Park SH, Choi EY. CD99 type II is a determining factor for the differentiation of primitive neuroectodermal cells. Exp Mol Med. 2003; 35(5):438-447. PubMed|https://doi.org/10.1038/emm.2003.57|Google Scholar Kim SH, Shin YK, Lee IS. Viral latent membrane protein 1 (LMP-1)-induced CD99 down-regulation in B cells leads to the generation of cells with Hodgkin’s and Reed-Sternberg phenotype. Blood. 2000; 95(1):294-300. PubMed|Google Scholar Michaloglou C, Vredeveld LC, Soengas MS. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 2005; 436(7051):720-724. PubMed|https://doi.org/10.1038/nature03890|Google Scholar Hahn MJ, Yoon SS, Sohn HW. Differential activation of MAP kinase family members triggered by CD99 engagement. FEBS Lett. 2000; 470(3):350-354. PubMed|https://doi.org/10.1016/S0014-5793(00)01330-2|Google Scholar Sciandra M, Marino MT, Manara MC. CD99 drives terminal differentiation of osteosarcoma cells by acting as a spatial regulator of ERK 1/2. J Bone Miner Res. 2014; 29(5):1295-1309. PubMed|https://doi.org/10.1002/jbmr.2141|Google Scholar Rocchi A, Manara MC, Sciandra M. CD99 inhibits neural differentiation of human Ewing sarcoma cells and thereby contributes to oncogenesis. J Clin Invest. 2010; 120(3):668-680. PubMed|https://doi.org/10.1172/JCI36667|Google Scholar Lee HJ, Kim E, Jee B. Functional involvement of src and focal adhesion kinase in a CD99 splice variant-induced motility of human breast cancer cells. Exp Mol Med. 2002; 34(3):177-183. PubMed|Google Scholar |