Abstract
Background. Spontaneous episodic vertigo syndromes, namely vestibular migraine (VM) and Menière’s disease (MD), are difficult to differentiate, even for an experienced clinician. In the presence of complex diagnostic information, automated systems can support human decision making. Recent developments in machine learning might facilitate bedside diagnosis of VM and MD.
Methods. Data of this study originate from the prospective patient registry of the German Centre for Vertigo and Balance Disorders, a specialized tertiary treatment center at the University Hospital Munich. The classification task was to differentiate cases of VM, MD from other vestibular disease entities. Deep Neural Networks (DNN) and Boosted Decision Trees (BDT) were used for classification.
Results. A total of 1357 patients were included (mean age 52.9, SD 15.9, 54.7% female), 9.9% with MD and 15.6% with VM. DNN models yielded an accuracy of 98.4; ±; 0.5%, a precision of 96.3; ±; 3.9%, and a sensitivity of 85.4; ±; 3.9% for VM, and an accuracy of 98.0; ±; 1.0%, a precision of 90.4; ±; 6.2% and a sensitivity of 89.9; ±; 4.6% for MD. BDT yielded an accuracy of 84.5; ±; 0.5%, precision of 51.8; ±; 6.1%, sensitivity of 16.9; ±; 1.7% for VM, and an accuracy of 93.3; ±; 0.7%, precision 76.0; ±; 6.7%, sensitivity 41.7; ±; 2.9% for MD.
Conclusion. The correct diagnosis of spontaneous episodic vestibular syndromes is challenging in clinical practice. Modern machine learning methods might be the basis for developing systems that assist practitioners and clinicians in their daily treatment decisions.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Medizin > Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie
Medizin > Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie > Epidemiologie für Schwindelerkrankungen |
Fakultätsübergreifende Einrichtungen: | Münchner Zentrum für Gesundheitswissenschaften (MC-Health) |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
URN: | urn:nbn:de:bvb:19-epub-75732-6 |
ISSN: | 1432-1459 (Electronic); 0340-5354 (Linking) |
Sprache: | Englisch |
Dokumenten ID: | 75732 |
Datum der Veröffentlichung auf Open Access LMU: | 30. Apr. 2021, 12:46 |
Letzte Änderungen: | 25. Jan. 2022, 12:54 |