Abstract
Most research articles presenting new data analysis methods claim that “the new method performs better than existing methods,” but the veracity of such statements is questionable. Our manuscript discusses and illustrates consequences of the optimistic bias occurring during the evaluation of novel data analysis methods, that is, all biases resulting from, for example, selection of datasets or competing methods, better ability to fix bugs in a preferred method, and selective reporting of method variants. We quantitatively investigate this bias using an example from epigenetic analysis: normalization methods for data generated by the Illumina HumanMethylation450K BeadChip microarray.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Publikationsform: | Publisher's Version |
Keywords: | Benchmarking, Optimistic bias, Neutral comparison study, Illumina HumanMethylation450K BeadChip, Normalization |
Fakultät: | Medizin > Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
URN: | urn:nbn:de:bvb:19-epub-75930-1 |
Sprache: | Englisch |
Dokumenten ID: | 75930 |
Datum der Veröffentlichung auf Open Access LMU: | 12. Mai 2021, 10:11 |
Letzte Änderungen: | 12. Mai 2021, 10:11 |