References: | 1. Deo R, Albert CM. Epidemiology and genetics of sudden cardiac death. Circulation
2012;125:620–637.
2. Priori SG, Blomström-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J,
Elliott PM, Fitzsimons D, Hatala R, Hindricks G, Kirchhof P, Kjeldsen K, Kuck K-H,
Hernandez-Madrid A, Nikolaou N, Norekvål TM, Spaulding C, Veldhuisen DJ Van,
ESC Scientific Document Group. 2015 ESC Guidelines for the management of patients
with ventricular arrhythmias and the prevention of sudden cardiac death: The Task
Force for the Management of Patients with Ventricular Arrhythmias and the Prevention
of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by:
Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J
2015;36:2793–2867.
3. Hoeijen DA Van, Blom MT, Bardai A, Souverein PC, Boer A De, Tan HL. Reduced
pre-hospital and in-hospital survival rates after out-of-hospital cardiac arrest of patients
with type-2 diabetes mellitus: an observational prospective community-based study.
Europace 2015;17:753–760.
4. Jouven X, Lemaître RN, Rea TD, Sotoodehnia N, Empana J-P, Siscovick DS. Diabetes,
glucose level, and risk of sudden cardiac death. Eur Heart J 2005;26:2142–2147.
5. Tomaselli GF, Zipes DP. What causes sudden death in heart failure? Circ Res
2004;95:754–763.
6. Finocchiaro G, Papadakis M, Dhutia H, Cole D, Behr ER, Tome M, Sharma S,
Sheppard MN. Obesity and sudden cardiac death in the young: Clinical and
pathological insights from a large national registry. Eur J Prev Cardiol 2018;25:395–
401.
7. Huxley RR, Lopez FL, Folsom AR, Agarwal SK, Loehr LR, Soliman EZ, Maclehose
R, Konety S, Alonso A. Absolute and attributable risks of atrial fibrillation in relation
to optimal and borderline risk factors: the Atherosclerosis Risk in Communities (ARIC)
study. Circulation 2011;123:1501–1508.
8. Wang TJ, Parise H, Levy D, D’Agostino RB, Wolf PA, Vasan RS, Benjamin EJ.
Obesity and the risk of new-onset atrial fibrillation. JAMA 2004;292:2471–2477.
9. Adriaens ME, Lodder EM, Moreno-Moral A, Šilhavý J, Heinig M, Glinge C,
Belterman C, Wolswinkel R, Petretto E, Pravenec M, Remme CA, Bezzina CR.
Systems Genetics Approaches in Rat Identify Novel Genes and Gene Networks
Associated With Cardiac Conduction. J Am Heart Assoc 2018;7:e009243.
10. Lodder EM, Scicluna BP, Milano A, Sun AY, Tang H, Remme CA, Moerland PD,
Tanck MWT, Pitt GS, Marchuk DA, Bezzina CR. Dissection of a Quantitative Trait
Locus for PR Interval Duration Identifies Tnni3k as a Novel Modulator of Cardiac
Conduction. Barsh GS, ed. PLoS Genet 2012;8:e1003113.
11. Potter PK, Bowl MR, Jeyarajan P, Wisby L, Blease A, Goldsworthy ME, Simon MM,
Greenaway S, Michel V, Barnard A, Aguilar C, Agnew T, Banks G, Blake A, Chessum
L, Dorning J, Falcone S, Goosey L, Harris S, Haynes A, Heise I, Hillier R, Hough T,
Hoslin A, Hutchison M, King R, Kumar S, Lad H V, Law G, MacLaren RE, et al.
Novel gene function revealed by mouse mutagenesis screens for models of age-related
disease. Nat Commun 2016;7:12444.
12. Arnold CN, Barnes MJ, Berger M, Blasius AL, Brandl K, Croker B, Crozat K, Du X,
Eidenschenk C, Georgel P, Hoebe K, Huang H, Jiang Z, Krebs P, Vine D La, Li X,
Lyon S, Moresco EMY, Murray AR, Popkin DL, Rutschmann S, Siggs OM, Smart
NG, Sun L, Tabeta K, Webster V, Tomisato W, Won S, Xia Y, Xiao N, et al. ENUinduced
phenovariance in mice: Inferences from 587 mutations. BMC Res Notes 2012;
13. Acevedo-Arozena A, Wells S, Potter P, Kelly M, Cox RD, Brown SDM. ENU
Mutagenesis, a Way Forward to Understand Gene Function. Annu Rev Genomics Hum
Genet 2008;
14. Riedl A, Wawro N, Gieger C, Meisinger C, Peters A, Roden M, Kronenberg F, Herder
C, Rathmann W, Völzke H, Reincke M, Koenig W, Wallaschofski H, Hauner H,
Daniel H, Linseisen J. Identification of Comprehensive Metabotypes Associated with
Cardiometabolic Diseases in the Population-Based KORA Study. Mol Nutr Food Res
2018;62:e1800117.
15. She P, Horn C Van, Reid T, Hutson SM, Cooney RN, Lynch CJ. Obesity-related
elevations in plasma leucine are associated with alterations in enzymes involved in
branched-chain amino acid metabolism. Am J Physiol Endocrinol Metab
2007;293:E1552-63.
16. Würtz P, Tiainen M, Mäkinen V-P, Kangas AJ, Soininen P, Saltevo J, Keinänen-
Kiukaanniemi S, Mäntyselkä P, Lehtimäki T, Laakso M, Jula A, Kähönen M, Vanhala
M, Ala-Korpela M. Circulating metabolite predictors of glycemia in middle-aged men
and women. Diabetes Care 2012;35:1749–1756.
17. Ruiz-Canela M, Guasch-Ferré M, Toledo E, Clish CB, Razquin C, Liang L, Wang DD,
Corella D, Estruch R, Hernáez Á, Yu E, Gómez-Gracia E, Zheng Y, Arós F,
Romaguera D, Dennis C, Ros E, Lapetra J, Serra-Majem L, Papandreou C, Portoles O,
Fitó M, Salas-Salvadó J, Hu FB, Martínez-González MA. Plasma branched
chain/aromatic amino acids, enriched Mediterranean diet and risk of type 2 diabetes:
case-cohort study within the PREDIMED Trial. Diabetologia 2018;61:1560–1571.
18. Veerman CC, Kosmidis G, Mummery CL, Casini S, Verkerk AO, Bellin M.
Immaturity of Human Stem-Cell-Derived Cardiomyocytes in Culture: Fatal Flaw or
Soluble Problem? Stem Cells Dev 2015;
19. Verkerk AO, Veerman CC, Zegers JG, Mengarelli I, Bezzina CR, Wilders R. Patchclamp
recording from human induced pluripotent stemcell-derived cardiomyocytes:
Improving action potential characteristics throughdynamic clamp. Int J Mol Sci 2017;
20. Meijer van Putten RME, Mengarelli I, Guan K, Zegers JG, Ginneken ACG van,
Verkerk AO, Wilders R. Ion channelopathies in human induced pluripotent stem cell
derived cardiomyocytes: a dynamic clamp study with virtual IK1. Front Physiol
Frontiers Media SA; 2015;6:7.
21. Portero V, Casini S, Hoekstra M, Verkerk AO, Mengarelli I, Belardinelli L, Rajamani
S, Wilde AAM, Bezzina CR, Veldkamp MW, Remme CA. Anti-arrhythmic potential
of the late sodium current inhibitor GS-458967 in murine Scn5a-1798insD+/− and
human SCN5A-1795insD+/− iPSC-derived cardiomyocytes. Cardiovasc Res
2017;113:829–838.
22. Baartscheer A, Schumacher CA, Fiolet JWT. Cytoplasmic sodium, calcium and free
energy change of the Na+/Ca2+-exchanger in rat ventricular myocytes. J Mol Cell
Cardiol 1998;
23. Baartscheer A, Schumacher CA, Belterman CNW, Coronel R, Fiolet JWT. SR calcium
handling and calcium after-transients in a rabbit model of heart failure. Cardiovasc Res
2003;
24. Holeček M. Branched-chain amino acids in health and disease: metabolism, alterations
in blood plasma, and as supplements. Nutr Metab (Lond) 2018;15:33.
25. Wang XJ, Yang X, Wang RX, Jiao HC, Zhao JP, Song ZG, Lin H. Leucine alleviates
dexamethasone-induced suppression of muscle protein synthesis via synergy
involvement of mTOR and AMPK pathways. Biosci Rep 2016;36:e00346–e00346.
26. Neinast M, Murashige D, Arany Z. Branched Chain Amino Acids. Annu Rev Physiol
2018;81:annurev-physiol-020518-114455.
27. Sciarretta S, Volpe M, Sadoshima J. Mammalian target of rapamycin signaling in
cardiac physiology and disease. Circ Res 2014;114:549–564.
28. Wu JY, Kao HJ, Li SC, Stevens R, Hillman S, Millington D, Chen YT. ENU
mutagenesis identifies mice with mithochondrial branched-chain aminotransferase
deficiency resembling human maple syrup urine disease. J Clin Invest The American
Society for Clinical Investigation; 2004;113:434–440.
29. She P, Reid TM, Bronson SK, Vary TC, Hajnal A, Lynch CJ, Hutson SM. Disruption
of BCATm in Mice Leads to Increased Energy Expenditure Associated with the
Activation of a Futile Protein Turnover Cycle. Cell Metab 2007;
30. Hutson SM, Wallin R, Hall TR. Identification of mitochondrial branched chain
aminotransferase and its isoforms in rat tissues. J Biol Chem 1992;267:15681–15686.
31. Drown PM, Torres N, Tovar AR, Davoodi J, Hutson SM. Use of sulfhydryl reagents to
investigate branched chain α-keto acid transport in mitochondria. Biochim Biophys
Acta - Biomembr Biochim Biophys Acta; 2000;1468:273–284.
32. Nickel AG, Hardenberg A Von, Hohl M, Löffler JR, Kohlhaas M, Becker J, Reil JC,
Kazakov A, Bonnekoh J, Stadelmaier M, Puhl SL, Wagner M, Bogeski I, Cortassa S,
Kappl R, Pasieka B, Lafontaine M, Lancaster CRD, Blacker TS, Hall AR, Duchen MR,
Kästner L, Lipp P, Zeller T, Müller C, Knopp A, Laufs U, Böhm M, Hoth M, Maack C.
Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure.
Cell Metab Cell Press; 2015;22:472–484.
33. Eisner DA, Caldwell JL, Trafford AW, Hutchings DC. The Control of Diastolic
Calcium in the Heart: Basic Mechanisms and Functional Implications. Circ. Res.
Lippincott Williams and Wilkins; 2020. p. 395–412.
34. Rivaud MR, Marchal GA, Wolswinkel R, Jansen JA, Made I Van Der, Beekman L,
Ruiz-Villalba A, Baartscheer A, Rajamani S, Belardinelli L, Veen TAB Van, Basso C,Thiene G, Creemers EE, Bezzina CR, Remme CA. Functional modulation of atrioventricular
conduction by enhanced late sodium current and calcium-dependent
mechanisms in Scn5a1798insD/+mice. Europace Oxford University Press;
2020;22:1579–1589.
35. Caioli S, Candelotti E, Pedersen JZ, Saba L, Antonini A, Incerpi S, Zona C. Baicalein
reverts L-valine-induced persistent sodium current up-modulation in primary cortical
neurons. Biochim Biophys Acta 2016;1862:566–575.
36. Zhao X, Han Q, Liu Y, Sun C, Gang X, Wang G. The Relationship between Branched-
Chain Amino Acid Related Metabolomic Signature and Insulin Resistance: A
Systematic Review. J. Diabetes Res. Hindawi Limited; 2016.
37. Tadros R, Ton AT, Fiset C, Nattel S. Sex differences in cardiac electrophysiology and
clinical arrhythmias: Epidemiology, therapeutics, and mechanisms. Can. J. Cardiol.
Pulsus Group Inc.; 2014. p. 783–792.
38. Parks RJ, Howlett SE. Sex differences in mechanisms of cardiac excitation-contraction
coupling. Pflugers Arch. Eur. J. Physiol. Pflugers Arch; 2013. p. 747–763.
39. Knerr I, Colombo R, Urquhart J, Morais A, Merinero B, Oyarzabal A, Pérez B, Jones
SA, Perveen R, Preece MA, Rogers Y, Treacy EP, Mayne P, Zampino G, MacKinnon
S, Wassmer E, Yue WW, Robinson I, Rodríguez‐ Pombo P, Olpin SE, Banka S.
Expanding the genetic and phenotypic spectrum of branched‐ chain amino acid
transferase 2 (BCAT2) deficiency. J Inherit Metab Dis 2019;
40. Wang XL, Li CJ, Xing Y, Yang YH, Jia JP. Hypervalinemia and hyperleucineisoleucinemia
caused by mutations in the branched-chain-amino-acid aminotransferase
gene. J Inherit Metab Dis 2015;
41. Satomi S, Morio A, Miyoshi H, Nakamura R, Tsutsumi R, Sakaue H, Yasuda T, Saeki
N, Tsutsumi YM. Branched-chain amino acids-induced cardiac protection against ischemia/reperfusion injury. Life Sci Elsevier Inc.; 2020;245.
42. Li Y, Xiong Z, Yan W, Gao E, Cheng H, Wu G, Liu Y, Zhang L, Li C, Wang S, Fan
M, Zhao H, Zhang F, Tao L. Branched chain amino acids exacerbate myocardial
ischemia/ reperfusion vulnerability via enhancing GCN2/ATF6/PPAR-α pathwaydependent
fatty acid oxidation. Theranostics Ivyspring International Publisher;
2020;10:5623–5640.
43. Wang W, Zhang F, Xia Y, Zhao S, Yan W, Wang H, Lee Y, Li C, Zhang L, Lian K,
Gao E, Cheng H, Tao L. Defective branched chain amino acid catabolism contributes
to cardiac dysfunction and remodeling following myocardial infarction. Am J Physiol -
Hear Circ Physiol American Physiological Society; 2016;311:H1160–H1169.
44. Zhenyukh O, Civantos E, Ruiz-Ortega M, Sánchez MS, Vázquez C, Peiró C, Egido J,
Mas S. High concentration of branched-chain amino acids promotes oxidative stress,
inflammation and migration of human peripheral blood mononuclear cells via
mTORC1 activation. Free Radic Biol Med 2017;104:165–177.
45. Bertero E, Maack C. Calcium signaling and reactive oxygen species in Mitochondria.
Circ. Res. Lippincott Williams and Wilkins; 2018. p. 1460–1478.
46. Lu J, Temp U, Müller-Hartmann A, Esser J, Grönke S, Partridge L. Sestrin is a key
regulator of stem cell function and lifespan in response to dietary amino acids. Nat
Aging Springer Science and Business Media LLC; 2021;1:60–72.
47. Richardson NE, Konon EN, Schuster HS, Mitchell AT, Boyle C, Rodgers AC, Finke
M, Haider LR, Yu D, Flores V, Pak HH, Ahmad S, Ahmed S, Radcliff A, Wu J,
Williams EM, Abdi L, Sherman DS, Hacker TA, Lamming DW. Lifelong restriction of
dietary branched-chain amino acids has sex-specific benefits for frailty and life span in
mice. Nat Aging Springer Science and Business Media LLC; 2021;1:73–86.
48. Zhang D, Contu R, Latronico MVG, Zhang JL, Rizzi R, Catalucci D, Miyamoto S, Huang K, Ceci M, Gu Y, Dalton ND, Peterson KL, Guan KL, Brown JH, Chen J,
Sonenberg N, Condorelli G. MTORC1 regulates cardiac function and myocyte survival
through 4E-BP1 inhibition in mice. J Clin Invest The American Society for Clinical
Investigation; 2010;120:2805–2816.
49. Shioi T, McMullen JR, Tarnavski O, Converso K, Sherwood MC, Manning WJ, Izumo
S. Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation
Lippincott Williams & Wilkins; 2003;107:1664–1670.
50. Harada M, Tadevosyan A, Qi X, Xiao J, Liu T, Voigt N, Karck M, Kamler M, Kodama
I, Murohara T, Dobrev D, Nattel S. Atrial Fibrillation Activates AMP-Dependent
Protein Kinase and its Regulation of Cellular Calcium Handling: Potential Role in
Metabolic Adaptation and Prevention of Progression. J Am Coll Cardiol 2015;66:47–
58.
51. Andersen MN, Skibsbye L, Tang C, Petersen F, MacAulay N, Rasmussen HB,
Jespersen T. PKC and AMPK regulation of Kv1.5 potassium channels. Channels
(Austin) 2015;9:121–128.
52. Sun H, Olson KC, Gao C, Prosdocimo DA, Zhou M, Wang Z, Jeyaraj D, Youn J-Y,
Ren S, Liu Y, Rau CD, Shah S, Ilkayeva O, Gui W-J, William NS, Wynn RM,
Newgard CB, Cai H, Xiao X, Chuang DT, Schulze PC, Lynch C, Jain MK, Wang Y.
Catabolic Defect of Branched-Chain Amino Acids Promotes Heart Failure. Circulation
2016;133:2038–2049. |
---|