Abstract
Here we examine the association between DNA methylation in circulating leukocytes and blood lipids in a multi-ethnic sample of 16,265 subjects. We identify 148, 35, and 4 novel associations among Europeans, African Americans, and Hispanics, respectively, and an additional 186 novel associations through a trans-ethnic meta-analysis. We observe a high concordance in the direction of effects across racial/ethnic groups, a high correlation of effect sizes between high-density lipoprotein and triglycerides, a modest overlap of associations with epigenome-wide association studies of other cardio-metabolic traits, and a largely non-overlap with lipid loci identified to date through genome-wide association studies. Thirty CpGs reached significance in at least 2 racial/ethnic groups including 7 that showed association with the expression of an annotated gene. CpGs annotated to CPT1A showed evidence of being influenced by triglycerides levels. DNA methylation levels of circulating leukocytes show robust and consistent association with blood lipid levels across multiple racial/ethnic groups.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Publikationsform: | Publisher's Version |
Fakultät: | Medizin > Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
URN: | urn:nbn:de:bvb:19-epub-76378-5 |
Sprache: | Englisch |
Dokumenten ID: | 76378 |
Datum der Veröffentlichung auf Open Access LMU: | 01. Jul. 2021, 06:07 |
Letzte Änderungen: | 01. Jul. 2021, 06:07 |
Literaturliste: | Lozano, J. V. et al. Serum lipid profiles and their relationship to cardiovascular disease in the elderly: the PREV-ICTUS study. Curr. Med Res Opin. 24, 659–670 (2008). - PubMed - DOI - PMC Petitti, D. B. et al. Serum lipids and glucose control: the SEARCH for Diabetes in Youth study. Arch. Pediatr. Adolesc. Med. 161, 159–165 (2007). - PubMed - DOI - PMC Trevisan, R., Dodesini, A. R. & Lepore, G. Lipids and renal disease. J. Am. Soc. Nephrol. 17, S145–S147 (2006). - PubMed - DOI - PMC Presecki, P. et al. Serum lipid levels in patients with Alzheimer’s disease. Coll. Antropol. 35, 115–120 (2011). - PubMed - PMC Chandler, P. D. et al. Lipid biomarkers and long-term risk of cancer in the Women’s Health Study. Am. J. Clin. Nutr. 103, 1397–1407 (2016). - PubMed - PMC - DOI His, M. et al. Prospective associations between serum biomarkers of lipid metabolism and overall, breast and prostate cancer risk. Eur. J. Epidemiol. 29, 119–132 (2014). - PubMed - DOI - PMC Global Lipids Genetics, C. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013). - DOI Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010). - PubMed - PMC - DOI Liu, D. J. et al. Exome-wide association study of plasma lipids in >300,000 individuals. Nat. Genet. 49, 1758–1766 (2017). - PubMed - PMC - DOI Gao, C. et al. Exome sequencing identifies genetic variants associated with circulating lipid levels in Mexican Americans: The Insulin Resistance Atherosclerosis Family Study (IRASFS). Sci. Rep. 8, 5603 (2018). - PubMed - PMC - DOI Fraga, M. F. et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl Acad. Sci. USA 102, 10604–10609 (2005). - PubMed - PMC - DOI Bjornsson, H. T. et al. Intra-individual change over time in DNA methylation with familial clustering. JAMA 299, 2877–2883 (2008). - PubMed - PMC - DOI Joehanes, R. et al. Epigenetic signatures of cigarette smoking. Circ. Cardiovasc Genet. 9, 436–447 (2016). - PubMed - PMC - DOI Wahl, S. et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature 541, 81–86 (2017). - PubMed - DOI - PMC Ma, J. et al. A peripheral blood DNA methylation signature of hepatic fat reveals a potential causal pathway for non-alcoholic fatty liver disease. Diabetes (2019). Hidalgo, B. et al. Epigenome-wide association study of fasting measures of glucose, insulin, and HOMA-IR in the Genetics of Lipid Lowering Drugs and Diet Network study. Diabetes 63, 801–807 (2014). - PubMed - PMC - DOI Chambers, J. C. et al. Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study. Lancet Diabetes Endocrinol. 3, 526–534 (2015). - PubMed - PMC - DOI Chu, A. Y. et al. Epigenome-wide association studies identify DNA methylation associated with kidney function. Nat. Commun. 8, 1286 (2017). - PubMed - PMC - DOI Richard, M. A. et al. DNA methylation analysis identifies loci for blood pressure regulation. Am. J. Hum. Genet. 101, 888–902 (2017). - PubMed - PMC - DOI Ligthart, S. et al. DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases. Genome Biol. 17, 255 (2016). - PubMed - PMC - DOI Irvin, M. R. et al. Epigenome-wide association study of fasting blood lipids in the Genetics of Lipid-lowering Drugs and Diet Network study. Circulation 130, 565–572 (2014). - PubMed - PMC - DOI Dekkers, K. F. et al. Blood lipids influence DNA methylation in circulating cells. Genome Biol. 17, 138 (2016). - PubMed - PMC - DOI Sayols-Baixeras, S. et al. Identification and validation of seven new loci showing differential DNA methylation related to serum lipid profile: an epigenome-wide approach. The REGICOR study. Hum. Mol. Genet 25, 4556–4565 (2016). - PubMed - PMC - DOI Braun, K. V. E. et al. Epigenome-wide association study (EWAS) on lipids: the Rotterdam Study. Clin. Epigenetics 9, 15 (2017). - PubMed - PMC - DOI Braun, K. V. et al. The role of DNA methylation in dyslipidaemia: a systematic review. Prog. Lipid Res. 64, 178–191 (2016). - PubMed - DOI - PMC Han, B. & Eskin, E. Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am. J. Hum. Genet. 88, 586–598 (2011). - PubMed - PMC - DOI Klarin, D. et al. Genetics of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program. Nat. Genet. 50, 1514–1523 (2018). - PubMed - PMC - DOI Hoffmann, T. J. et al. A large electronic-health-record-based genome-wide study of serum lipids. Nat. Genet. 50, 401–413 (2018). - PubMed - PMC - DOI Gaunt, T. R. et al. Systematic identification of genetic influences on methylation across the human life course. Genome Biol. 17, 61 (2016). - PubMed - PMC - DOI Joehanes, R. et al. Integrated genome-wide analysis of expression quantitative trait loci aids interpretation of genomic association studies. Genome Biol. 18, 16 (2017). - PubMed - PMC - DOI Davey Smith, G. & Hemani, G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 23, R89–R98 (2014). - PubMed - PMC - DOI Relton, C. L. & Davey Smith, G. Two-step epigenetic Mendelian randomization: a strategy for establishing the causal role of epigenetic processes in pathways to disease. Int J. Epidemiol. 41, 161–176 (2012). - PubMed - PMC - DOI Mittelstrass, K. & Waldenberger, M. DNA methylation in human lipid metabolism and related diseases. Curr. Opin. Lipido. 29, 116–124 (2018). - DOI Yang, C. S. et al. Ubiquitin modification by the E3 Ligase/ADP-Ribosyltransferase Dtx3L/Parp9. Mol. Cell 66, 503–516 e5 (2017). - PubMed - PMC - DOI Verheugd, P. et al. Regulation of NF-kappaB signalling by the mono-ADP-ribosyltransferase ARTD10. Nat. Commun. 4, 1683 (2013). - PubMed - DOI - PMC Yvan-Charvet, L., Wang, N. & Tall, A. R. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb. Vasc. Biol. 30, 139–143 (2010). - PubMed - DOI - PMC Pfeiffer, L. et al. DNA methylation of lipid-related genes affects blood lipid levels. Circ. Cardiovasc Genet. 8, 334–342 (2015). - PubMed - PMC - DOI Miroshnikova, V. V. et al. Regulation of ABCA1 and ABCG1 gene expression in the intraabdominal adipose tissue. Biomed. Khim 62, 283–289 (2016). - PubMed - DOI - PMC Dayeh, T. et al. DNA methylation of loci within ABCG1 and PHOSPHO1 in blood DNA is associated with future type 2 diabetes risk. Epigenetics 11, 482–488 (2016). - PubMed - PMC - DOI Demina, E. P., Miroshnikova, V. V. & Schwarzman, A. L. Role of the ABC transporters A1 and G1, key reverse cholesterol transport proteins, in atherosclerosis. Mol. Biol. (Mosk.) 50, 223–230 (2016). - DOI Peng, P. et al. A preliminary study of the relationship between promoter methylation of the ABCG1, GALNT2 and HMGCR genes and coronary heart disease. PLoS ONE 9, e102265 (2014). - PubMed - PMC - DOI Aslibekyan, S. et al. CPT1A methylation is associated with plasma adiponectin. Nutr. Metab. Cardiovasc. Dis. 27, 225–233 (2017). - PubMed - DOI - PMC Das, M. et al. Association of DNA Methylation at CPT1A Locus with Metabolic Syndrome in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) Study. PLoS ONE 11, e0145789 (2016). - PubMed - PMC - DOI Basciano, H., Federico, L. & Adeli, K. Fructose, insulin resistance, and metabolic dyslipidemia. Nutr. Metab. (Lond.) 2, 5 (2005). - DOI Ohashi, K. et al. High fructose consumption induces DNA methylation at PPARalpha and CPT1A promoter regions in the rat liver. Biochem. Biophys. Res. Commun. 468, 185–189 (2015). - PubMed - DOI - PMC Michels, K. B. et al. Recommendations for the design and analysis of epigenome-wide association studies. Nat. Methods 10, 949–955 (2013). - PubMed - DOI - PMC Huang, Y. T. et al. Epigenome-wide profiling of DNA methylation in paired samples of adipose tissue and blood. Epigenetics 11, 227–236 (2016). - PubMed - PMC - DOI Walton, E. et al. Correspondence of DNA methylation between blood and brain tissue and its application to Schizophrenia research. Schizophr. Bull. 42, 406–414 (2016). - PubMed - DOI - PMC Crujeiras, A. B. et al. DNA methylation map in circulating leukocytes mirrors subcutaneous adipose tissue methylation pattern: a genome-wide analysis from non-obese and obese patients. Sci. Rep. 7, 41903 (2017). - PubMed - PMC - DOI Barajas-Olmos, F. et al. Altered DNA methylation in liver and adipose tissues derived from individuals with obesity and type 2 diabetes. BMC Med. Genet. 19, 28 (2018). - PubMed - PMC - DOI Inouye, M. et al. An immune response network associated with blood lipid levels. PLoS Genet. 6, e1001113 (2010). - PubMed - PMC - DOI Nath, A. P. et al. An interaction map of circulating metabolites, immune gene networks, and their genetic regulation. Genome Biol. 18, 146 (2017). - PubMed - PMC - DOI Houseman, E. A. et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinform. 13, 86 (2012). - DOI Birney, E., Smith, G. D. & Greally, J. M. Epigenome-wide association studies and the interpretation of disease-omics. PLoS Genet. 12, e1006105 (2016). - PubMed - PMC - DOI Brion, M. J., Shakhbazov, K. & Visscher, P. M. Calculating statistical power in Mendelian randomization studies. Int J. Epidemiol. 42, 1497–1501 (2013). - PubMed - DOI - PMC Friedewald, W. T., Levy, R. I. & Fredrickson, D. S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18, 499–502 (1972). - PubMed - DOI - PMC Maksimovic, J., Gordon, L. & Oshlack, A. SWAN: Subset-quantile within array normalization for illumina infinium HumanMethylation450 BeadChips. Genome Biol. 13, R44 (2012). - PubMed - PMC - DOI Aryee, M. J. et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30, 1363–1369 (2014). - PubMed - PMC - DOI Teschendorff, A. E. et al. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics 29, 189–196 (2013). - PubMed - DOI - PMC Pidsley, R. et al. A data-driven approach to preprocessing Illumina 450K methylation array data. BMC Genomics 14, 293 (2013). - PubMed - PMC - DOI Jaffe, A. E. & Irizarry, R. A. Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol. 15, R31 (2014). - PubMed - PMC - DOI Chen, Y. A. et al. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics 8, 203–209 (2013). - PubMed - PMC - DOI Devlin, B., Roeder, K. & Wasserman, L. Genomic control, a new approach to genetic-based association studies. Theor. Popul Biol. 60, 155–166 (2001). - PubMed - DOI - PMC Irizarry, R. A. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264 (2003). - PubMed - DOI - PMC Smith, G. D. & Ebrahim, S. Mendelian randomization: prospects, potentials, and limitations. Int J. Epidemiol. 33, 30–42 (2004). - PubMed - DOI - PMC Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J. Epidemiol. 44, 512–525 (2015). - PubMed - PMC - DOI Greenland, S. An introduction to instrumental variables for epidemiologists. Int J. Epidemiol. 29, 722–729 (2000). - PubMed - DOI - PMC |