Logo Logo
Hilfe
Hilfe
Switch Language to English

Tian, Liheng; Landry, Guillaume; Dedes, George ORCID logoORCID: https://orcid.org/0000-0003-0071-513X; Pinto, Marco; Kamp, Florian; Belka, Claus ORCID logoORCID: https://orcid.org/0000-0002-1287-7825 und Parodi, Katia ORCID logoORCID: https://orcid.org/0000-0001-7779-6690 (2020): A new treatment planning approach accounting for prompt gamma range verification and interfractional anatomical changes. In: Physics in medicine and biology, Bd. 65, Nr. 9, 095005 [PDF, 27MB]

Abstract

Prompt gamma (PG) imaging is widely investigated for spot-by-spot in vivo range verification for proton therapy. Previous studies pointed out that the accuracy of prompt gamma imaging is affected by the statistics (number of protons delivered per pencil beam) of the proton beams and the conformity between prompt gamma and dose distribution (PG-dose correlation). Recently a novel approach to re-optimize conventional treatment plans by boosting a few pencil beams with good PG-dose correlation above the statistics limit for reliable PG detectability was proposed. However, up to now, only PG-dose correlation on the planning computed tomography (CT) was considered, not accounting for the fact that the robustness of the PG-dose correlation is not guaranteed in the cases of interfractional anatomical changes. In this work, this approach is further explored with respect to the robustness of the PG-dose correlation of each pencil beam in the case of interfractional anatomical changes. A research computational platform, combining Monte Carlo pre-calculated pencil beams with the analytical Matlab-based treatment planning system (TPS) CERR, is used for treatment planning. Geant4 is used for realistic simulation of the dose delivery and PG generation for all individual pencil beams in the heterogeneous patient anatomy using multiple CT images for representative patient cases (in this work, CTs of one prostate and one head and neck cancer patient are used). First, a Monte Carlo treatment plan is created using CERR. Thereby the PG emission and dose distribution for each individual spot is obtained. Second, PG-dose correlation is quantified using the originally proposed approach as well as a new indicator, which accounts for the sensitivity of individual spots to heterogeneities in the 3D dose distribution. This is accomplished by using a 2D distal surface (dose surface) derived from the 3D dose distribution for each spot. A few pencil beams are selected for each treatment field, based on their PG-dose correlation and dose surface, and then boosted in the new re-optimized treatment plan. All treatment plans are then fully re-calculated with Monte Carlo on the CT scans of the corresponding patient at three different time points. The result shows that all treatment plans are comparable in terms of dose distribution and dose averaged LET distributions. The spots recommended by our indicators maintain good PG-dose correlation in the cases of interfractional anatomical changes, thus ensuring that the proton range shift due to anatomical changes can be monitored. Compared to another proposed spots aggregation approach, our approach shows advantages in terms of the detectability and reliability of PG, especially in presence of heterogeneities.

Dokument bearbeiten Dokument bearbeiten