Kapp, A.; Zeck-Kapp, G.; Möller, A.; Putz, Reinhard (1988): Granulocyte-activating mediators (GRAM). III. Further functional characterization of monocyte-derived GRAM. In: Archives of dermatological research, Vol. 280, Nr. 7: S. 346-353




In the present study we investigated the capability of human epidermal cells to generate granulocyte-activating mediators (GRAM). It could be shown that human epidermal cells as well as an epidermoid carcinoma cell line (A431) produce an epidermal cell-derived granulocyte-activating mediator (EC-GRAM) which stimulates human granulocytes to release significant levels of toxic oxygen radicals as measured by a lucigenin-dependent chemiluminescence (CL). For further characterization of EC-GRAM the A431 cell line was used. Supernatants of A431 cells usually contained maximal EC-GRAM levels within 24 h of incubation. Factor production was enhanced by bacterial lipopolysaccharide (LPS), but not by silica particles and PHA. Moreover, freeze-thaw lysates of A431 cells and extracts of heat-separated human epidermis contained significant levels of EC-GRAM. Preincubation of granulocytes with EC-GRAM resulted in an enhanced response to subsequent stimulation with the chemotactic peptide f-met-phe. In contrast EC-GRAM did not affect the response to PMA or zymosan particles. However, EC-GRAM treated granulocytes were unresponsive to restimulation with EC-GRAM. Upon high performance liquid chromatography (HPLC) gel filtration EC-GRAM eluted within two major peaks exhibiting a molecular weight of 17 kD and 44 kD. According to its biochemical and biological properties EC-GRAM can be separated from other cytokines such as ETAF/-interleukin 1, interleukin 2, interferons, granulocyte colony-stimulating factor (G-CSF) and tumor necrosis factor (TNF). However, an antibody to human GM-CSF neutralized about 75% of the activity. These results indicate that EC-GRAM activity stimulating the generation of reactive oxygen species by granulocytes is probably due to GM-CSF.