Abstract
Lake stratification strengthens with increasing surface water temperatures, thereby reducing the depth of the mixed layer. Phytoplankton communities are not only exposed to different nutrient availability within a mixed water column, but also to different light quality. We conducted controled laboratory and mesocosm experiments to investigate phytoplankton, especially cyanobacteria, responses to different light quality and mixing depths. Our mesocosm experiment allowed the manipulation of mixing depth in situ by a mesocosm approach and to follow the effects of changing mixing depth on the phytoplankton community composition. Our laboratory experiment allowed the control of temperature and light quantity. To investigate the effect of light quality on phytoplankton, we created a light gradient from full photosynthetic active radiation to a reduced blue spectrum. In both experiments, shifts in phytoplankton community composition from eukaryote to cyanobacteria occurred at shallow mixing depth with higher availability of photosynthetic active radiation. Our results from the mesocosm experiment support the idea that reduced mixing depth can promote cyanobacterial abundance. With our laboratory experiment, we were able to manipulate light quality independent of temperature, available nutrients and light intensity influencing phytoplankton abundance. Results from the laboratory experiments support our hypothesis that a shift in light spectrum alone is a driver, strong enough to enhance cyanobacteria occurrence. Most of the previous studies dealing with cyanobacterial blooms have investigated temperature and eutrophication effects. Certainly, these are major factors for the growth of phytoplankton, but our experiments show that other aspects, such as the quality of light, must be also taken into account to explain cyanobacterial blooms. Such shifts in the phytoplankton community from eukaryote to cyanobacteria dominated communities will have strong consequences for food web dynamics. Several cyanobacteria specific traits, (e.g., toxin production, lack of essential fatty acids, and inedibility through production of large colonies) reduce transfer efficiencies of energy and matter between phyto- and zooplankton and therefore can influence higher trophic levels such as fish.
Dokumententyp: | Zeitschriftenartikel |
---|---|
EU Funded Grant Agreement Number: | 731065 |
EU-Projekte: | Horizon 2020 > European Research Infrastructures
Horizon 2020 > European Research Infrastructures > AQUACOSM - Network of Leading European AQUAtic MesoCOSM Facilities Connecting Mountains to Oceans from the Arctic to the Mediterranean Horizon 2020 |
Publikationsform: | Publisher's Version |
Keywords: | blooms, freshwater, mesocosms, phytoplankton, wavelengths |
Fakultät: | Biologie > Department Biologie II |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften; Biologie
500 Naturwissenschaften und Mathematik > 580 Pflanzen (Botanik) 500 Naturwissenschaften und Mathematik > 590 Tiere (Zoologie) |
URN: | urn:nbn:de:bvb:19-epub-77939-5 |
Sprache: | Englisch |
Dokumenten ID: | 77939 |
Datum der Veröffentlichung auf Open Access LMU: | 25. Nov. 2021, 08:39 |
Letzte Änderungen: | 25. Nov. 2021, 08:39 |
Literaturliste: | Andersen, T., Saloranta, T. M., & Tamminen, T. (2007). A statistical procedure for unsupervised classification of nutrient limitation bioassay experiments with natural phytoplankton communities. Limnology and Oceanography: Methods, 5(4), 111–118. https://doi. org/10.4319/lom.2007.5.111 Båmstedt, U. (2019). Comparing static and dynamic incubations in primary production measurements under different euphotic and mixing depths. Hydrobiologia, 827(1), 155–169. https://doi.org/10.1007/ s1075 0-018- 3762- 1 Behl, S., Donval, A., & Stibor, H. (2011). The relative importance of species diversity and functional group diversity on carbon uptake in phytoplankton communities. Limnology and Oceanography, 56(2), 683–694. https://doi.org/10.4319/lo.2011.56.2.0683 Benson, B. J., Magnuson, J. J., Jensen, O. P., Card, V. M., Hodgkins, G., Korhonen, J., … Granin, N. G. (2012). Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855–2005). Climatic Change, 112(2), 299–323. https://doi.org/10.1007/ s1058 4-011- 0212- 8 Berger, S. A., Diehl, S., Kunz, T. J., Albrecht, D., Oucible, A. M., & Ritzer, S. (2006). Light supply, plankton biomass, and seston stoichiometry in a gradient of lake mixing depths. Limnology and Oceanography, 51(4), 1898–1905. https://doi.org/10.4319/lo.2006.51.4.1898 Berger, S. A., Diehl, S., Stibor, H., Trommer, G., & Ruhenstroth, M. (2010). Water temperature and stratification depth independently shift cardinal events during plankton spring succession. Global Change Biology, 16(7), 1954–1965. https://doi. org/10.1111/j.1365-2486.2009.02134. x Berger, S. A., Diehl, S., Stibor, H., Trommer, G., Ruhenstroth, M., Wild, A., … Striebel, M. (2007). Water temperature and mixing depth affect timing and magnitude of events during spring succession of the plankton. Oecologia, 150, 643–654. https://doi.org/10.1007/s0044 2-006- 0550- 9 Blenckner, T., Adrian, R., Livingstone, D. M., Jennings, E., Weyhenmeyer, G. A., George, D. G., … Teubner, K. (2007). Large-scale climatic signatures in lakes across Europe: A meta-analysis. Global Change Biology, 13(7), 1314–1326. https://doi. org/10.1111/j.1365-2486.2007.01364. x Blomqvist, P., Pettersson, A., & Hyenstrand, P. (1994). Ammonium-nitrogen- A key regulatory factor causing dominance of Hydrobiologie, 132(2), 141–164. https://doi.org/10.1127/archi v-hydro biol/132/1994/141 Bock, C., Salcher, M., Jensen, M., Pandey, R. V., & Boenigk, J. (2018). Synchrony of eukaryotic and prokaryotic planktonic communities in three seasonally sampled Austrian lakes. Frontiers in Microbiology, 9, 1290. https://doi.org/10.3389/fmicb.2018.01290 Britton, G. (1983). The biochemistry of natural pigments. Cambridge University Press. Carey, C. C., Brown, B. L., & Cottingham, K. L. (2017). The cyanobacterium Gloeotrichia echinulata increases the stability and network complexity of phytoplankton communities. Ecosphere, 8(7), e01830. https://doi.org/10.1002/ecs2.1830 Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18(1), 117–143. https://doi.org/10.1111/j.1442-9993.1993. tb004 38.x De Marsac, N. T. (2003). Phycobiliproteins and phycobilisomes: The early observations. Photosynthesis Research, 76(1–3), 193–205. https:// doi.org/10.1023/A:10249 54911473 De Senerpont Domis, L. N., Mooij, W. M., & Huisman, J. (2007). Climate-induced shifts in an experimental phytoplankton community: A mechanistic approach. In Shallow lakes in a changing world (pp. 403–413). Springer. DeMott, W. R., Gulati, R. D., & Van Donk, E. (2001). Daphnia food limitation in three hypereutrophic Dutch lakes: Evidence for exclusion of large-bodied species by interfering filaments of cyanobacteria. Limnology and Oceanography, 46(8), 2054–2060. https://doi. org/10.4319/lo.2001.46.8.2054 DeNicola, M., Hoagland, K. D., & Roemer, S. C. (1992). Influences of canopy cover on spectral irradiance and periphyton assemblages in a prairie stream. Journal of the North American Benthological Society, 11(4), 391–404. https://doi.org/10.2307/1467560 Diehl, S., Berger, S., Ptacnik, R., & Wild, A. (2002). Phytoplankton, light, and nutrients in a gradient of mixing depths: Field experiments. Ecology, 83(2), 399–411. https://doi.org/10.2307/2680023 Doubek, J. P., Campbell, K. L., Doubek, K. M., Hamre, K. D., Lofton, M. E., McClure, R. P., … Carey, C. C. (2018). The effects of hypolimnetic anoxia on the diel vertical migration of freshwater crustacean zooplankton. Ecosphere, 9(7), e02332. https://doi.org/10.1002/ecs2.2332 Gerten, D., & Adrian, R. (2002). Effects of climate warming, North Atlantic Oscillation, and El Nino-Southern Oscillation on thermal conditions and plankton dynamics in northern hemispheric lakes. The Scientific World Journal, 2, 586–606. https://doi.org/10.1100/ tsw.2002.141 Gray, E., Elliott, J. A., Mackay, E. B., Folkard, A. M., Keenan, P. O., & Jones, I. D. (2019). Modelling lake cyanobacterial blooms: Disentangling the climate-driven impacts of changing mixed depth and water temperature. Freshwater Biology, 64(12), 2141–2155. https://doi. org/10.1111/fwb.13402 Gray, E., Mackay, E. B., Elliott, J. A., Folkard, A. M., & Jones, I. D. (2020). Wide-spread inconsistency in estimation of lake mixed depth impacts interpretation of limnological processes. Water Research, 168, 115–136. https://doi.org/10.1016/j.watres.2019.115136 Gulati, R., & DeMott, W. (1997). The role of food quality for zooplankton: Remarks on the state-of- the- art, perspectives and priorities. Freshwater Biology, 38(3), 753–768. https://doi. org/10.1046/j.1365-2427.1997.00275. x Haney, J. F., & Hall, D. J. (1973). Sugar-coated Daphnia: A preservation technique for Cladocera 1. Limnology and Oceanography, 18(2), 331–333. https://doi.org/10.4319/lo.1973.18.2.0331 Harke, M. J., Steffen, M. M., Gobler, C. J., Otten, T. G., Wilhelm, S. W., Wood, S. A., & Paerl, H. W. (2016). A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae, 54, 4–20. https://doi.org/10.1016/j.hal.2015.12.007 Huisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M., & Visser, P. M. (2018). Cyanobacterial blooms. Nature Reviews Microbiology, 16, 471–483. https://doi.org/10.1038/s4157 9-018- 0040- 1 Huisman, J., Sharples, J., Stroom, J. M., Visser, P. M., Kardinaal, W. E. A., Verspagen, J. M., & Sommeijer, B. (2004). Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology, 85(11), 2960–2970. https://doi.org/10.1890/03-0763 Huisman, J., van Oostveen, P., & Weissing, F. J. (1999). Species dynamics in phytoplankton blooms: Incomplete mixing and competition for light. The American Naturalist, 154(1), 46–68. https://doi. org/10.1086/303220 Jeppesen, E., Meerhoff, M., Davidson, T. A., Trolle, D., Søndergaard, M., Lauridsen, T. L., … Nielsen, A. (2014). Climate change impacts on lakes: An integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes. Journal of Limnology, 73, 88–11. https://doi.org/10.4081/jlimn ol.2014.844 Joshua, S., Bailey, S., Mann, N. H., & Mullineaux, C. W. (2005). Involvement of phycobilisome diffusion in energy quenching in cyanobacteria. Plant Physiology, 138(3), 1577–1585. https://doi.org/10.1104/ pp.105.061168 Kosten, S., Huszar, V. L. M., Bécares, E., Costa, L. S., Donk, E., Hansson, L.-A., … Scheffer, M. (2012). Warmer climates boost cyanobacterial dominance in shallow lakes. Global Change Biology, 18(1), 118–126. https://doi.org/10.1111/j.1365-2486.2011.02488. x Krebs, C. J. (1989). Ecological methodology (No. QH541. 15. S72. K74 1999.). Harper & Row. Kremer, C. T., Gillette, J. P., Rudstam, L. G., Brettum, P., & Ptacnik, R. (2014). A compendium of cell and natural unit biovolumes for >1200 freshwater phytoplankton species: Ecological Archives E095–257. Ecology, 95(10), 2984. https://doi.org/10.1890/14-0603.1 Kunz, T. J., & Diehl, S. (2003). Phytoplankton, light and nutrients along a gradient of mixing depth: A field test of producer-resource theory. Freshwater Biology, 48(6), 1050–1063. https://doi. org/10.1046/j.1365-2427.2003.01065. x Litchman, E., de Tezanos Pinto, P., Klausmeier, C. A., Thomas, M. K., & Yoshiyama, K. (2010). Linking traits to species diversity and community structure in phytoplankton. In L. Naselli-Flores & G. Rossetti (Eds.), Fifty years after the ‘‘Homage to Santa Rosalia’’: Old and new paradigms on biodiversity in aquatic ecosystems (pp. 15–28). Springer. Luimstra, V. M., Schuurmans, J. M., Hellingwerf, K. J., Matthijs, H. C., & Huisman, J. (2020). Blue light induces major changes in the gene expression profile of the cyanobacterium Synechocystis sp. PCC 6803. Physiologia Plantarum, 170(1), 10–26. https://doi.org/10.1111/ ppl.13086 Luimstra, V. M., Schuurmans, J. M., Verschoor, A. M., Hellingwerf, K. J., Huisman, J., & Matthijs, H. C. (2018). Blue light reduces photosynthetic efficiency of cyanobacteria through an imbalance between photosystems I and II. Photosynthesis Research, 138(2), 177–189. https://doi.org/10.1007/s1112 0-018- 0561- 5 Lürling, M., Eshetu, F., Faassen, E. J., Kosten, S., & Huszar, V. L. (2013). Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshwater Biology, 58(3), 552–559. https:// doi.org/10.1111/j.1365-2427.2012.02866. x Magee, M. R., Wu, C. H., Robertson, D. M., Lathrop, R. C., & Hamilton, D. P. (2016). Trends and abrupt changes in 104 years of ice cover and water temperature in a dimictic lake in response to air temperature, wind speed, and water clarity drivers. Hydrology and Earth System Sciences, 20(5), 1681–1702. https://doi.org/10.5194/ hess-20- 1681- 2016 Mantzouki, E., Visser, P. M., Bormans, M., & Ibelings, B. W. (2016). Understanding the key ecological traits of cyanobacteria as a basis for their management and control in changing lakes. Aquatic Ecology, 50(3), 333–350. https://doi.org/10.1007/s1045 2-015- 9526- 3Martin-Creuzburg, D., von Elert, E., & Hoffmann, K. H. (2008). Nutritional constraints at the cyanobacteria—Daphnia magna interface: The role of sterols. Limnology and Oceanography, 53(2), 456–468. https://doi.org/10.4319/lo.2008.53.2.0456 Mehner, T. (2000). Influence of spring warming on the predation rate of underyearling fish on Daphnia–A deterministic simulation approach. Freshwater Biology, 45(2), 253–263. https://doi. org/10.1046/j.1365-2427.2000.00551. x Morales-Williams, A. M., Wanamaker, A. D., Jr., & Downing, J. A. (2017). Cyanobacterial carbon concentrating mechanisms facilitate sustained CO 2 depletion in eutrophic lakes. Biogeosciences, 14(11), 2865–2875. https://doi.org/10.5194/bg-14- 2865- 2017 Moss, B., Kosten, S., Meerhoff, M., Battarbee, R. W., Jeppesen, E., Mazzeo, N., … Scheffer, M. (2011). Allied attack: Climate change and eutrophication. Inland Waters, 1(2), 101–105. https://doi. org/10.5268/IW-1.2.359 Müller-Navarra, D. C., Brett, M. T., Park, S., Chandra, S., Ballantyne, A. P., Zorita, E., & Goldman, C. R. (2004). Unsaturated fatty acid content in seston and tropho-dynamic coupling in lakes. Nature, 427(6969), 69–72. https://doi.org/10.1038/natur e02210 Mullineaux, C. W. (2008). Phycobilisome-reaction centre interaction in cyanobacteria. Photosynthesis Research, 95(2–3), 175. https://doi. org/10.1007/s1112 0-007- 9249- y Overmann, J., & Tilzer, M. M. (1989). Control of primary productivity and the significance of photosynthetic bacteria in a meromictic kettle lake. Mittlerer Buchensee, West-Germany. Aquatic Sciences, 51(4), 261–278. https://doi.org/10.1007/BF008 77171 Pace, M. L., Batt, R. D., Buelo, C. D., Carpenter, S. R., Cole, J. J., Kurtzweil, J. T., & Wilkinson, G. M. (2017). Reversal of a cyanobacterial bloom in response to early warnings. Proceedings of the National Academy of Sciences of the United States of America, 114(2), 352–357. https:// doi.org/10.1073/pnas.16124 24114 Paerl, H. (2008). Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater–marine continuum. In H. K. Hudnell (Ed.), Cyanobacterial harmful algal blooms: State of the science and research needs (pp. 217–237). Springer. Paerl, H. W., & Huisman, J. (2008). Blooms like it hot. Science, 320(5872), 57–58. https://doi.org/10.1126/scien ce.1155398 Paerl, H. W., & Huisman, J. (2009). Climate change: A catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports, 1(1), 27–37. https://doi. org/10.1111/j.1758-2229.2008.00004. x Paerl, H. W., & Paul, V. J. (2012). Climate change: Links to global expansion of harmful cyanobacteria. Water Research, 46(5), 1349–1363. https://doi.org/10.1016/j.watres.2011.08.002 Pick, F. R. (2016). Blooming algae: A Canadian perspective on the rise of toxic cyanobacteria. Canadian Journal of Fisheries and Aquatic Sciences, 73(7), 1149–1158. https://doi.org/10.1139/cjfas -2015- 0470 Rasconi, S., Gall, A., Winter, K., & Kainz, M. J. (2015). Increasing water temperature triggers dominance of small freshwater plankton. PLoS One, 10(10), e0140449. https://doi.org/10.1371/journ al.pone.0140449 Romo, S. (1994). Growth parameters of Pseudanabaena galeata Böcher in culture under different light and temperature conditions. Algological Studies/Archiv Für Hydrobiologie, Supplement Volumes, 75, 239–248. https://doi.org/10.1127/algol_stud/75/1995/239 Scheffer, M., Rinaldi, S., Gragnani, A., Mur, L. R., & van Nes, E. H. (1997). On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology, 78(1), 272–282. https://doi.org/10.2307/2265995 Schellenberger Costa, B., Jungandreas, A., Jakob, T., Weisheit, W., Mittag, M., & Wilhelm, C. (2013). Blue light is essential for high light acclimation and photoprotection in the diatom Phaeodactylum tricornutum. Journal of Experimental Botany, 64(2), 483–493. https:// doi.org/10.1093/jxb/ers340 Selmeczy, G. B., Krienitz, L., Casper, P., & Padisák, J. (2018). Phytoplankton response to experimental thermocline deepening: A mesocosm experiment. Hydrobiologia, 805(1), 259–271. https://doi.org/10.1007/ s1075 0-017- 3308- y Six, C., Thomas, J.-C., Garczarek, L., Ostrowski, M., Dufresne, A., Blot, N., … Partensky, F. (2007). Diversity and evolution of phycobilisomes in marine Synechococcus spp.: A comparative genomics study. Genome Biology, 8(12), R259. https://doi.org/10.1186/gb-2007- 8- 12- r259 Smith, V. H. (1986). Light and nutrient effects on the relative biomass of blue-green algae in lake phytoplankton. Canadian Journal of Fisheries and Aquatic Sciences, 43(1), 148–153. https://doi.org/10.1139/ f86-016 Sommer, U., Adrian, R., Bauer, B., & Winder, M. (2012). The response of temperate aquatic ecosystems to global warming: Novel insights from a multidisciplinary project. Marine Biology, 159(11), 2367–2377. https://doi.org/10.1007/s0022 7-012- 2085- 4 Stockenreiter, M., Haupt, F., Graber, A. K., Seppälä, J., Spilling, K., Tamminen, T., & Stibor, H. (2013). Functional group richness: Implications of biodiversity for light use and lipid yield in microalgae. Journal of Phycology, 49(5), 838–847. https://doi.org/10.1111/ jpy.12092 Stomp, M., Huisman, J., de Jongh, F., Veraart, A. J., Gerla, D., Rijkeboer, M., … Stal, L. J. (2004). Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature, 432(7013), 104–107. https://doi.org/10.1038/natur e03044 Striebel, M., Behl, S., Diehl, S., & Stibor, H. (2009). Spectral niche complementarity and carbon dynamics in pelagic ecosystems. The American Naturalist, 174(1), 141–147. https://doi.org/10.1086/599294 Suda, S., Liu, Y., He, J., Hu, Z., Hiroki, M., & Watanabe, M. M. (1998). Morphological, biochemical and physiological characteristics of Lyngbya hieronymusii var. hieronymusii (Oscillatoriales, Cyanobacteria). Phycological Research, 46, 51–55. https://doi. org/10.1046/j.1440-1835.1998.00125. x Thomas, M. K., & Litchman, E. (2016). Effects of temperature and nitrogen availability on the growth of invasive and native cyanobacteria. Hydrobiologia, 763(1), 357–369. https://doi.org/10.1007/s1075 0-015- 2390- 2 Urrutia-Cordero, P., Ekvall, M. K., & Hansson, L. A. (2016). Local food web management increases resilience and buffers against global change effects on freshwaters. Scientific Reports, 6, 29542. https:// doi.org/10.1038/srep2 9542 Utermöhl, H. (1958). Zur vervollkommnung der quantitativen phytoplankton-methodik: Mit 1 Tabelle und 15 abbildungen im Text und auf 1 Tafel. Internationale Vereinigung Für Theoretische Und Angewandte Limnologie: Mitteilungen, 9(1), 1–38. https://doi. org/10.1080/05384 680.1958.11904091 Valle, K. C., Nymark, M., Aamot, I., Hancke, K., Winge, P., Andresen, K., … Bones, A. M. (2014). System responses to equal doses of photosynthetically usable radiation of blue, green, and red light in the marine diatom Phaeodactylum tricornutum. PLoS One, 9(12), https:// doi.org/10.1371/journ al.pone.0114211 Van Thor, J. J., Mullineaux, C. W., Matthijs, H. C. P., & Hellingwerf, K. J. (1998). Light harvesting and state transitions in cyanobacteria. Botanica Acta, 111(6), 430–443. https://doi.org/10.1111/ j.1438-8677.1998. tb007 31.x Verbeek, L., Gall, A., Hillebrand, H., & Striebel, M. (2018). Warming and oligotrophication cause shifts in freshwater phytoplankton communities. Global Change Biology, 24(10), 4532–4543. https:// doi.org/10.1111/gcb.14337 Visser, P., Ibelings, B. A. S., Van Der Veer, B., Koedood, J. A. N., & Mur, R. (1996). Artificial mixing prevents nuisance blooms of the cyanobacterium Microcystis in Lake Nieuwe Meer, the Netherlands. Freshwater Biology, 36(2), 435–450. https://doi.org/10.1007/s1045 2-015- 9537- 0 Wetzel, R. G., & Likens, G. (1991). Limnological analysis (2nd ed.). Springer-Verlag. Wilhelm, S. W., Bullerjahn, G. S., & McKay, R. M. L. (2020). The complicated and confusing ecology of Microcystis blooms. MBio, 11(3), https://doi.org/10.1128/mBio.00529 -20 Winder, M. (2012). Limnology: Lake warming mimics fertilization. Nature Climate Change, 2(11), 771–772. https://doi.org/10.1038/nclim ate1728 Winder, M., & Schindler, D. E. (2004). Climatic effects on the phenology of lake processes. Global Change Biology, 10(11), 1844–1856. https://doi.org/10.1111/j.1365-2486.2004.00849. x Winder, M., & Sommer, U. (2012). Phytoplankton response to a changing climate. Hydrobiologia, 698(1), 5–16. https://doi.org/10.1007/s1075 0-012- 1149- 2 Witt, B. A., Beyer, J. E., Hallidayschult, T. C., & Hambright, K. D. (2019). Short-term toxicity effects of Prymnesium parvum on zooplankton community composition. Aquatic Sciences, 81(4), 55. https://doi. org/10.1007/s0002 7-019- 0651- 2 Woolway, R. I., & Merchant, C. J. (2019). Worldwide alteration of lake mixing regimes in response to climate change. Nature Geoscience, 12(4), 271–327. https://doi.org/10.1038/s4156 1-019- 0322- x Woolway, R. I., Merchant, C. J., Van Den Hoek, J., Azorin-Molina, C., Nõges, P., Laas, A., … Jones, I. D. (2019). Northern Hemisphere atmospheric stilling accelerates lake thermal responses to a warming world. Geophysical Research Letters, 46(21), 11983–11992. https:// doi.org/10.1029/2019G L082752 Xu, H., Cai, H., Yu, G., & Jiang, H. (2013). Insights into extracellular polymeric substances of cyanobacterium Microcystis aeruginosa using fractionation procedure and parallel factor analysis. Water Research, 47(6), 2005–2014. https://doi.org/10.1016/j.watres.2013.01.019 Zohary, T., & Robarts, R. D. (1990). Hyperscums and the population dynamics of Microcystis aeruginosa. Journal of Plankton Research, 12(2), 423–432. https://doi.org/10.1093/plank t/12.2.423 |