Abstract
Microalgal range expansions are increasing in frequency and magnitude but generally remain unnoticed until mass development occurs. Gonyostomum semen is a freshwater raphidophyte that causes nuisance blooms in lakes and has recently expanded its distribution across Europe. G. semen was considered to mainly occur in humic lakes in the boreal region but is now found in high density also in other freshwater habitats on a larger geographic scale with growing incidence. In this study, we focused on which environmental factors limit its expansion. Our hypothesis was that G. semen occurs in many different lake types, except for high alkalinity lakes, in which high pH in combination with high calcium concentration would inhibit its growth. Results from our field study illustrate the environmental heterogeneity of G. semen bloom sites across Europe and the United States. Nevertheless, none of these sites combined high pH and high calcium concentration. In a mesocosm study, as well as a laboratory experiment, we further demonstrated that growth of G. semen is inhibited in conditions combining both high pH and high calcium concentration. We also discuss the function of Sphagnum peat mosses in rendering an alkaline habitat suitable to G. semen growth. Our study highlights that high alkalinity environments act as a major colonization barrier to G. semen. While this finding explains which environmental filters limit G. semen distribution it also helps in understanding its current expansion. With globally decreasing calcium concentrations in freshwater ecosystems, new habitats have and will become conducive to G. semen growth.
Dokumententyp: | Zeitschriftenartikel |
---|---|
EU Funded Grant Agreement Number: | 731065 |
EU-Projekte: | Horizon 2020 > European Research Infrastructures
Horizon 2020 > European Research Infrastructures > AQUACOSM - Network of Leading European AQUAtic MesoCOSM Facilities Connecting Mountains to Oceans from the Arctic to the Mediterranean Horizon 2020 |
Publikationsform: | Publisher's Version |
Fakultät: | Biologie > Department Biologie II |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften
500 Naturwissenschaften und Mathematik > 570 Biowissenschaften; Biologie 500 Naturwissenschaften und Mathematik > 580 Pflanzen (Botanik) 500 Naturwissenschaften und Mathematik > 590 Tiere (Zoologie) |
URN: | urn:nbn:de:bvb:19-epub-77942-8 |
Sprache: | Englisch |
Dokumenten ID: | 77942 |
Datum der Veröffentlichung auf Open Access LMU: | 25. Nov. 2021, 12:43 |
Letzte Änderungen: | 29. Nov. 2021, 14:08 |
Literaturliste: | Anderson, D. M. 1989. Toxic algal blooms and red tides: a global perspective, p. 11– 16. In T. Okaichi, D. M. Anderson, and T. Nemoto [eds.], Red tides, biology, environmental science, and toxicology. Elsevier. Google Scholar Anderson, D. M., P. M. Glibert, and J. M. Burkholder. 2002. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries 25: 704– 726. CrossrefWeb of Science®Google Scholar Buchberger, F., and M. Stockenreiter. 2018. Unsuccessful invaders structure a natural freshwater phytoplankton community. Ecosphere 9: e02158. doi:10.1002/ecs2.2158 Wiley Online LibraryWeb of Science®Google Scholar Budzyńska, A., and others. 2019. Environmental factors driving the occurrence of the invasive cyanobacterium Sphaerospermopsis aphanizomenoides (Nostocales) in temperate lakes. Sci. Total Environ. 650: 1338– 1347. CrossrefCASPubMedWeb of Science®Google Scholar Cairns, A., and N. Yan. 2009. A review of the influence of low ambient calcium concentrations on freshwater daphniids, gammarids, and crayfish. Environ. Rev. 17: 67– 79. CrossrefCASGoogle Scholar Clymo, R. S. 1963. Ion exchange in Sphagnum and its relation to bog ecology. Ann. Bot. 27: 309– 324. CrossrefCASWeb of Science®Google Scholar Codd, G. A., S. G. Bell, K. Kaya, C. J. Ward, K. A. Beattie, and J. S. Metcalf. 1999. Cyanobacterial toxins, exposure routes and human health. Eur. J. Phycol. 34: 405– 415. CrossrefWeb of Science®Google Scholar Cronberg, G., G. Lindmark, and S. Björk. 1988. Mass development of the flagellate Gonyostomum semen (Raphidophyta) in Swedish forest lakes - an effect of acidification? Hydrobiologia 161: 217– 236. CrossrefCASWeb of Science®Google Scholar Cronberg, G. 2005. The life cycle of Gonyostomum semen (Raphidophyceae). Phycologia 44: 285– 293. CrossrefWeb of Science®Google Scholar Dalla Torre, K. W., and L. G. von Sarnthein. 1901. II. Band: Die Algen von Tirol, Vorarlberg und Liechtenstein. Verlag der Wagner'schen Universitäts-Buchhandlung. Google Scholar De Senerpont Domis, L. N., D. B. Van de Waal, N. R. Helmsing, E. Van Donk, and W. M. Mooij. 2014. Community stoichiometry in a changing world: Combined effects of warming and eutrophication on phytoplankton dynamics. Ecology 95: 1485– 1495. Wiley Online LibraryPubMedWeb of Science®Google Scholar Diesing, K. M. 1866. Revision der Prothelminthen, Abtheilung: Mastigophoren, p. 287– 401. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Classe. Abt. 1, Mineralogie, Botanik, Zoologie, Anatomie, Geologie, Paläotologie. Google Scholar Drouet, F., and A. Cohen. 1935. The morphology of Gonyostomum semen from woods hole, Massachusetts. Biol. Bull. 68: 422– 439. CrossrefWeb of Science®Google Scholar Druvietis, I., G. Spriņǵe, A. Briede, I. Kokori¯te, and E. Parele. 2010. A comparative assessment of the bog aquatic environment of the Ramsar site of Teiči Neture reserve and North Vidzeme biosphere reserve, Latvia. In Kļaviņš, M. (ed.), Mires and Peat. University of Latvia Press, Riga: 19– 41. Google Scholar Ehrenberg, C. G. 1853. Über die neuerlich bei Berlin vorgekommenen neuen Formen des mikroskopischen Lebens, p. 183- 194. Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Königlich Preussischen Akademie der Wissenschaften zu Berlin. Google Scholar Findlay, D. L., M. Paterson, L. L. Hendzel, and H. Kling. 2005. Factors influencing Gonyostomum semen blooms in a small boreal reservoir lake. Hydrobiologia 533: 243– 252. CrossrefCASWeb of Science®Google Scholar Gough, S. B. 1977. The growth of selected desmid (Desmidiales, Chlorophyta) taxa at different calcium and pH levels. Am. J. Bot. 64: 1297– 1299. Wiley Online LibraryCASWeb of Science®Google Scholar Guillard, R. R., and C. J. Lorenzen. 1972. Yellow-green algae with chlorophyllide C. J. Phycol. 8: 10– 14. Wiley Online LibraryCASWeb of Science®Google Scholar Hagman, C. H. C., A. Ballot, D. O. Hjermann, B. Skjelbred, P. Brettum, and R. Ptacnik. 2015. The occurrence and spread of Gonyostomum semen (Ehr.) Diesing (Raphidophyceae) in Norwegian lakes. Hydrobiologia 744: 1– 14. CrossrefCASWeb of Science®Google Scholar Hagman, C. H. C., B. Skjelbred, J. E. Thrane, T. Andersen, and H. A. de Wit. 2019. Growth responses of the nuisance algae Gonyostomum semen (Raphidophyceae) to DOC and associated alterations of light quality and quantity. Aquat. Microb. Ecol. 82: 241– 251. CrossrefWeb of Science®Google Scholar Hallegraeff, G. M. 1993. A review of harmful algal blooms and their apparent lobal increase. Phycologia 32: 79– 99. CrossrefCASWeb of Science®Google Scholar Hallegraeff, G. M. 2003. Harmful algal blooms: A global overview. Monogr Oceanogr Methodol 11: 25– 49. Google Scholar Hessen, D. O., T. Andersen, K. Tominaga, and A. G. Finstad. 2017. When soft waters becomes softer; drivers of critically low levels of ca in Norwegian lakes. Limnol. Oceanogr. 62: 289– 298. Wiley Online LibraryCASWeb of Science®Google Scholar Higo, S., T. Maung Saw Htoo, T. Yamatogi, N. Ishida, S. Hirae, and K. Koike. 2017. Application of a pulse-amplitude-modulation (PAM) fluorometer reveals its usefulness and robustness in the prediction of Karenia mikimotoi blooms: A case study in Sasebo Bay, Nagasaki, Japan. Harmful Algae 61: 63– 70. CrossrefWeb of Science®Google Scholar Hillebrand, H., C. D. Durselen, D. Kirschtel, U. Pollingher, and T. Zohary. 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35: 403– 424. Wiley Online LibraryWeb of Science®Google Scholar Ho, J., T. Tumkaya, S. Aryal, H. Choi, and A. Claridge-Chang. 2019. Moving beyond P values: Data analysis with estimation graphics. Nat. Methods 16: 565– 566. CrossrefCASPubMedWeb of Science®Google Scholar Hutchinson, G. E. 1967. A treatise on limnology, introduction to lake biology and the limnoplankton, v. 2. Wiley. Google Scholar Jeziorski, A., and others. 2008. The widespread threat of calcium decline in fresh waters. Science 322: 1374– 1377. CrossrefCASPubMedWeb of Science®Google Scholar Jeziorski, A., and others. 2015. The jellification of north temperate lakes. Proc. R. Soc. B-Biol. Sci. 282: 2014–2449. doi:10.1098/rspb.2014.2449 PubMedWeb of Science®Google Scholar Johansson, K. S. L., C. Trigal, T. Vrede, and R. K. Johnson. 2013. Community structure in boreal lakes with recurring blooms of the nuisance flagellate Gonyostomum semen. Aquat Sci 75: 447– 455. CrossrefCASWeb of Science®Google Scholar Johansson, K. S. L., C. Trigal, T. Vrede, P. van Rijswijk, W. Goedkoop, and R. K. Johnson. 2016. Algal blooms increase heterotrophy at the base of boreal lake food webs-evidence from fatty acid biomarkers. Limnol. Oceanogr. 61: 1563– 1573. Wiley Online LibraryCASWeb of Science®Google Scholar Karosiene, J., J. Kasperoviciene, J. Koreiviene, and I. Vitonyte. 2014. Assessment of the vulnerability of Lithuanian lakes to expansion of Gonyostomum semen (Raphidophyceae). Limnologica 45: 7– 15. CrossrefWeb of Science®Google Scholar Karpowicz, M., P. Zieliński, M. Grabowska, J. Ejsmont-Karabin, J. Kozłowska, and I. Feniova. 2020. Effect of eutrophication and humification on nutrient cycles and transfer efficiency of matter in freshwater food webs. Hydrobiologia 847: 2521– 2540. CrossrefCASWeb of Science®Google Scholar Korneva, L. G. 2000. Ecological aspects of the mass development of Gonyostomum semen (Ehr.) Dies. (Raphidophyta). Algologia 10: 265– 277. Google Scholar Kromkamp, J. C., and others. 2009. Short-term variations in photosynthetic parameters of Nannochloropsis cultures grown in two types of outdoor mass cultivation systems. Aquat. Microb. Ecol. 56: 309– 322. CrossrefWeb of Science®Google Scholar Kusber, W.-H. 2003. Typification of the four European species of Gonyostomum (Raphidophyceae) and first records of G. depressum from NE Germany. Willdenowia: 33: 467– 475. CrossrefGoogle Scholar Le Cohu, R., J. Guitard, N. Comoy, and J. Brabet. 1989. Gonyostomum semen (Raphidophycées), nuisance potentielle des grands réservoirs français? L'exemple du lac de Pareloup. Archiv für Hydrobiologie 117: 225– 236. Google Scholar Lebret, K., M. F. Fernandez, C. H. C. Hagman, K. Rengefors, and L.-A. Hansson. 2012. Grazing resistance allows bloom formation and may explain invasion success of Gonyostomum semen. Limnol. Oceanogr. 57: 727– 734. Wiley Online LibraryWeb of Science®Google Scholar Lebret, K., S. V. M. Tesson, E. S. Kritzberg, C. Tomas, and K. Rengefors. 2015. Phylogeography of the freshwater raphidophyte Gonyostomum semen confirms a recent expansion in Nothern Europe by a single haplotype. J. Phycol. 51: 768– 781. Wiley Online LibraryPubMedWeb of Science®Google Scholar Lebret, K., O. Ostman, S. Langenheder, S. Drakare, F. Guillemette, and E. S. Lindström. 2018. High abundances of the nuisance raphidophyte Gonyostomum semen in brown water lakes are associated with high concentrations of iron. Sci. Rep. 8: 13463. doi:10.1038/s41598-018-31892-7 CrossrefPubMedWeb of Science®Google Scholar Lepistö, L., S. Antikainen, and J. Kivinen. 1994. The occurrence of Gonyostomum semen (Ehr.) Diesing in Finnish lakes. Hydrobiologia 273: 1– 8. CrossrefWeb of Science®Google Scholar Levander, K. M. 1894. Materialen zur Kenntniss der Wasserfauna in der Umgebung von Helsingfors, mit besonderen Berücksichtigung des Meeresfauna I. Protozoa. Acta Soc. Fauna et Flora Fennica 12: 30– 34. Google Scholar Lind, O. T. 1985. Handbook of common methods in limnology. 2nd ed: Kendall/Hunt Publishing Company. Google Scholar Litchman, E. 2010. Invisible invaders: Non-pathogenic invasive microbes in aquatic and terrestrial ecosystems. Ecol. Lett. 13: 1560– 1572. Wiley Online LibraryPubMedWeb of Science®Google Scholar Löffler, H. 2004. Origin of Lake Basins, p. 8–60. In P. E. O'Sullivan and C. S. Reynolds [eds.], The Lakes Handbook, Limnology and limnetic ecology. 1: Blackwell Science. Google Scholar Münzner, K., R. Gollnisch, J. Koreiviene, K. Rengefors, and E. S. Lindström. 2021. High iron requirements for growth in the nuisance alga Gonyostomum semen (Raphidophyceae). J. Phycol. 13170. doi:10.1111/jpy.13170 Wiley Online LibraryWeb of Science®Google Scholar Negro, A. I., C. De Hoyos, and J. C. Vega. 2000. Phytoplankton structure and dynamics in Lake Sanabria and Valparaiso reservoir (NW Spain). Hydrobiologia 424: 25– 37. CrossrefWeb of Science®Google Scholar Nõges, T. 2009. Relationships between morphometry, geographic location and water quality parameters of European lakes. Hydrobiologia 633: 33– 43. CrossrefCASWeb of Science®Google Scholar Padisak, J., G. Vasas, and G. Borics. 2015. Phycogeography of freshwater phytoplankton: Traditional knowledge and new molecular tools. Hydrobiologia 764: 3– 27. CrossrefCASWeb of Science®Google Scholar Paulino, S., A. Vilares, and E. Valério. 2015. Ocorrência e disseminação da microalga Gonyostomum semen em albufeiras portuguesas, v. 4. Instituto Nacional de Saúde Doutor Ricardo Jorge, IP; Boletim Epidemiológico Observações. julho-setembro, p. 23– 25. Google Scholar Pęczuła, W. 2007. Mass development of the algal species Gonyostomum semen (Raphidophyceae) in the mesohumic Lake Płotycze (Central-Eastern Poland). Oceanol. Hydrobiol. Stud. 36: 163– 172. Google Scholar Pęczuła, W. 2013. Habitat factors accompanying the mass appearances of nuisance, invasive and alien algal species Gonyostomum semen (Ehr.) Diesing in humic lakes of eastern Poland. Polish J. Ecol 61: 535– 543. Web of Science®Google Scholar Pithart, D., L. Pechar, and G. Mattsson. 1997. Summer blooms of raphidophyte Gonyostomum semen and its diurnal vertical migration in a floodplain pool. Archiv. für Hydrobiol. Suppl. 119: 119– 133. Google Scholar R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Google Scholar Rakko, A., R. Laugaste, and I. Ott. 2008. Algal blooms in Estonian small lakes, p. 211– 220. In Algal toxins: Nature, occurrence, effect and detection. Springer. CrossrefGoogle Scholar Rengefors, K., C. Palsson, L. A. Hansson, and L. Heiberg. 2008. Cell lysis of competitors and osmotrophy enhance growth of the bloom-forming alga Gonyostomum semen. Aquat. Microb. Ecol. 51: 87– 96. CrossrefWeb of Science®Google Scholar Rengefors, K., G. A. Weyhenmeyer, and I. Bloch. 2012. Temperature as a driver for the expansion of the microalga Gonyostomum semen in Swedish lakes. Harmful Algae 18: 65– 73. CrossrefWeb of Science®Google Scholar Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores, and S. Melo. 2002. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24: 417– 428. CrossrefWeb of Science®Google Scholar Rohrlack, T. 2020. The diel vertical migration of the nuisance alga Gonyostomum semen is controlled by temperature and by a circadian clock. Limnologica 80: 125746. doi:10.1016/j.limno.2019.125746 CrossrefWeb of Science®Google Scholar Rott, E. 1981. Some results from phytoplankton counting intercalibrations. Schweiz. Zeitsch. Fur Hydrol.-Swiss J. Hydrol. 43: 34– 62. Web of Science®Google Scholar Salonen, K., and M. Rosenberg. 2000. Advantages from diel vertical migration can explain the dominance of Gonyostomum semen (Raphidophyceae) in a small, steeply-stratified humic lake. J. Plankton Res. 22: 1841– 1853. CrossrefWeb of Science®Google Scholar Sassenhagen, I., J. Sefbom, A. Godhe, and K. Rengefors. 2015a. Germination and colonization success of Gonyostomum semen (Raphidophyceae) cysts after dispersal to new habitats. J. Plankton Res 37: 857– 861. CrossrefPubMedWeb of Science®Google Scholar Sassenhagen, I., S. Wilken, A. Godhe, and K. Rengefors. 2015b. Phenotypic plasticity and differentiation in an invasive freshwater microalga. Harmful Algae 41: 38– 45. CrossrefWeb of Science®Google Scholar Shoesmith, E. A., and A. J. Brook. 1983. Monovalent—divalent cation ratios and the occurrence of phytoplankton, with special reference to the desmids. Freshw. Biol. 13: 151– 155. Wiley Online LibraryCASWeb of Science®Google Scholar Simola, H., and L. Arvola. 2005. Lakes of northern Europe, p. 117– 158. In P. E. O'Sullivan and C. S. Reynolds [eds.], The lakes handbook: Lake restoration and rehabilitation. 2: Blackwell Science. Google Scholar Sommer, U., T. Hansen, O. Blum, N. Holzner, O. Vadstein, and H. Stibor. 2005. Copepod and microzooplankton grazing in mesocosms fertilised with different Si : N ratios: No overlap between food spectra and Si : N influence on zooplankton trophic level. Oecologia 142: 274– 283. CrossrefPubMedWeb of Science®Google Scholar Sörensen, I. 1954. Gonyostomum semen (Ehrenb.) Diesing – en vattenorganism av teoretiskt och praktiskt interesse. 1954. Svensk Faunistisk Revy 2: 47– 52. Google Scholar Stein, F. 1878. Der Organismus der Infusionsthiere, III. Abtheilung: Die Naturgeschichte der Flagellaten oder Geisselinfusorien, 1. Hälfte, p. 1- 154. Google Scholar Sterner, R. W., and J. J. Elser. 2002. Ecological stoichiometry: The biology of elements from molecules to the biosphere. Princeton University Press. Google Scholar Strasser, R. J., A. Srivastava, and M. Tsimilli-Michael. 2000. The fluorescence transient as a tool to characterize and screen photosynthetic samples, p. 445– 483. In M. Yunus, U. Pathre, and P. Mohanty [eds.], Probing photosynthesis: mechanisms, regulation and adaptation. Taylor & Francis. Google Scholar Sukenik, A., O. Hadas, A. Kaplan, and A. Quesada. 2012. Invasion of Nostocales (cyanobacteria) to subtropical and temperate freshwater lakes - physiological, regional, and global driving forces. Front. Microbiol. 3: 86. doi:10.3389/fmicb.2012.00086 CrossrefPubMedWeb of Science®Google Scholar Sunda, W. G., E. Graneli, and C. J. Gobler. 2006. Positive feedback and the development and persistence of ecosystem disruptive algal blooms. J. Phycol. 42: 963– 974. Wiley Online LibraryWeb of Science®Google Scholar Trigal, C., S. Hallstan, K. S. L. Johansson, and R. K. Johnson. 2013. Factors affecting occurrence and bloom formation of the nuisance flagellate Gonyostomum semen in boreal lakes. Harmful Algae 27: 60– 67. CrossrefWeb of Science®Google Scholar Utermöhl, H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Internationale Vereinigung für theoretische und angewandte Limnologie: Mitteilungen 9, Google Scholar Watson, S. B., B. A. Whitton, S. N. Higgins, H. W. Paerl, B. W. Brooks, and J. D. Wehr. 2015. Harmful algal blooms, p. 873– 920. In J. D. Wehr, R. Sheath, and J. P. Kociolek [eds.], Freshwater algae of North America. Academic Press. CrossrefGoogle Scholar Weston, D. J., and others. 2015. Sphagnum physiology in the context of changing climate: Emergent influences of genomics, modelling and host-microbiome interactions on understanding ecosystem function. Plant Cell Environ. 38: 1737– 1751. Wiley Online LibraryPubMedWeb of Science®Google Scholar Wetzel, R. G. 2001. Limnology: Lake and river ecosystems. 3rd ed: Academic Press. Google Scholar Weyhenmeyer, G. A., and others. 2019. Widespread diminishing anthropogenic effects on calcium in freshwaters. Sci. Rep. 9: 10450. doi:10.1038/s41598-019-46838-w CrossrefPubMedWeb of Science®Google Scholar Willén, E., S. Hajdu, and Y. Pejler. 1990. Summer phytoplankton in 73 nutrient-poor Swedish lakes. Classification, ordination and choice of long-term monitoring objects. Limnologica 20: 217– 228. Google Scholar Woelkerling, W. J., and S. B. Gough. 1976. Wisconsin desmids. III. Desmid community composition and distribution in relation to lake type and water chemistry. Hydrobiologia 51: 3– 31. CrossrefWeb of Science®Google Scholar |