Abstract
In this work, an ontology-based model for AI-assisted medicine side-effect (SE) prediction is developed, where three main components, including the drug model, the treatment model, and the AI-assisted prediction model, of the proposed model are presented. To validate the proposed model, an ANN structure is established and trained by two hundred forty-two TCM prescriptions. These data are gathered and classified from the most famous ancient TCM book, and more than one thousand SE reports, in which two ontology-based attributions, hot and cold, are introduced to evaluate whether the prescription will cause SE or not. The results preliminarily reveal that it is a relationship between the ontology-based attributions and the corresponding predicted indicator that can be learnt by AI for predicting the SE, which suggests the proposed model has a potential in AI-assisted SE prediction. However, it should be noted that the proposed model highly depends on the sufficient clinic data, and hereby, much deeper exploration is important for enhancing the accuracy of the prediction.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Medizin |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
URN: | urn:nbn:de:bvb:19-epub-78999-8 |
ISSN: | 1748-670X |
Sprache: | Englisch |
Dokumenten ID: | 78999 |
Datum der Veröffentlichung auf Open Access LMU: | 15. Dez. 2021, 14:46 |
Letzte Änderungen: | 11. Jan. 2023, 10:43 |