Abstract
PurposeDue to the increased need for retention of older workforce caused by demographic changes in industrialized countries, support of healthy aging in occupational settings is of increasing relevance. This study examines the relationship between leucocyte telomere length (LTL), a potential biomarker for biological aging, and selection, optimization, and compensation (SOC) and learning opportunities as strategies involving efficient management and gain of resources at work.MethodsWithin a cross-sectional study, blood samples were drawn from 141 geriatric care professionals to measure LTL by quantitative real-time polymerase-chain reaction. Furthermore, all participants were asked with standardized questionnaires to rate their learning opportunities at work and use of SOC strategies. Analyses were performed by multiple linear regressions.ResultsSOC use, especially compensation, tended to be negatively, and learning opportunities tended to be positively associated with LTL. Furthermore, a significant interaction was found between optimization and learning opportunities, such that LTL and learning opportunities were only positively associated when optimization was high.ConclusionsResources at work were weakly associated with telomere length, which is not unexpected in view of the multiplicity of factors affecting LTL. The results further suggest that a mismatch between SOC and learning opportunities may negatively affect successful aging. They also suggest that more detailed research on biological aging and its relation to resources at work is needed.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Medizin > Institut und Poliklinik für Arbeits-, Sozial- und Umweltmedizin |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
ISSN: | 0340-0131 |
Sprache: | Englisch |
Dokumenten ID: | 80256 |
Datum der Veröffentlichung auf Open Access LMU: | 15. Dez. 2021, 14:52 |
Letzte Änderungen: | 17. Jul. 2024, 06:12 |